PART 1

DIGITAL PRINCIPLES
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NUMBER SYSTEMS
AND CODES

Modern computers don’t work with decimal numbers.
Instead, they process binary numbers, groups of Os and 1s.
Why binary numbers? Because electronic devices are most
rcliable when designed for two-state (binary) operation.
This chapter discusses binary numbers and other concepts
needed to understand computer operation.

1-1 DECIMAL ODOMETER

René Descartes (1596-1650) said that the way to learn a
new subject is to go from the known to the unknown, from
the simple to the complex. Let’s try it.

The Known

Everyone has seen an odometer (miles indicator) in action.
When a car is new, its odometer starts with

00000

After 1 mile the reading becomes

00001

Successive miles produce 00002, 00003, and so on, up to

00009

A familiar thing happens at the end of the tenth mile.
When the units wheel turns from 9 back to 0, a tab on this
wheel forces the tens wheel to advance by 1. This is why
the numbers change to

00010

Reset-and-Carry

The units wheel has reset to 0 and sent a carry to the tens
wheel. Let’s call this familiar action reset-and-carry.

The other wheels also reset and carry. After 999 miles
the odometer shows

00999

What does the next mile do? The units wheel resets and
carries, the tens wheel resets and carries, the hundreds
wheel resets and carries, and the thousands wheel advances
by 1, to get

01000

Digits and Strings

The numbers on each odometer wheel are called digits.
The decimal number system uses ten digits, O through 9.
In a decimal odometer, each time the units wheel runs out
of digits, it resets to 0 and sends a carry to the tens wheel.
When the tens wheel runs out of digits, it resets to 0 and
sends a carry to the hundreds wheel. And so on with the
remaining wheels.

One more point. A string is a group of characters (either
letters or digits) written one after another. For instance,
734 is a string of 7, 3, and 4. Similarly, 2C8A is a string
of 2, C, 8, and A.

1-2 BINARY ODOMETER

Binary means two. The binary number system uses only
two digits, O and 1. All other digits (2 through 9) are
thrown away. In other words, binary numbers are strings
of Os and 1s.

An Unusual Odometer

Visualize an odometer whose wheels have only two digits,
0 and 1. When each wheel turns, it displays 0, then 1, then
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back to 0, and the cycle repeats. Because each wheel has
only two digits, we call this device a binary odometer.
In a car a binary odometer starts with

0000 (zero)
After 1 mile, it indicates
0001 (one)

The next mile forces the units wheel to reset and carry; so
the numbers change to

0010 (two)
The third mile results in

0011 (three)

What happens after 4 miles? The units wheel resets and
carries, the second wheel resets and carries, and the third
wheel advances by 1. This gives

0100 (four)
Successive miles produce

0101 (five)
0110 (six)
0111 (seven)

After 8 miles, the units wheel resets and carries, the
second wheel resets and carries, the third wheel resets and
carries, and the fourth wheel advances by 1. The result is

1000 (eight)
The ninth mile gives

1001 (nine)
and the tenth mile produces

1010 (ten)

(Try working out a few more readings on your own.)

You should have the idea by now. Each mile advances
the units wheel by 1. Whenever the units wheel runs out
of digits, it resets and carries. Whenever the second wheel
runs out of digits, it resets and carries. And so for the other
wheels.

Binary Numbers
A binary odometer displays binary numbers, strings of Os

and 1s. The number 0001 stands for 1, 0010 for 2, 0011
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for 3, and so forth. Binary numbers are long when large
amounts are involved. For instance, 101010 represents
decimal 42. As another example, 111100001111 stands for
decimal 3,855.

Computer circuits are like binary odometers; they count
and work with binary numbers. Therefore, you have to
learn to count with binary numbers, to convert them to
decimal numbers, and to do binary arithmetic. Then you
will be ready to understand how computers operate.

A final point. When a decimal odometer shows 0036,
we can drop the leading Os and read the number as 36.
Similarly, when a binary odometer indicates 0011, we can
drop the leading Os and read the number as 11. With the
leading Os omitted, the binary numbers are 0, 1, 10, 11,
100, 101, and so on. To avoid confusion with decimal
numbers, read the binary numbers like this: zero, one, one-
ZEro, one-one, One-zero-zero, one-zero-one, etc.

1-3 NUMBER CODES

People used to count with pebbles. The numbers 1, 2, 3
looked like @, @@, @@®. Larger numbers were worse:
seven appeared as 000 000O.

Codes

From the earliest times, people have been creating codes
that allow us to think, calculate, and communicate. The
decimal numbers are an example of a code (see Table
1-1). It’s an old idea now, but at the time it was as
revolutionary; 1 stands for @, 2 for @@, 3 for 0@@,
and so forth.

Table 1-1 also shows the binary code. 1 stands for @, 10
for @@, 11 for @@@®, and so on. A binary number and a
decimal number are equivalent if each represents the same
amount of pebbles. Binary 10 and decimal 2 are equivalent
because each represents @@. Binary 101 and decimal 5 are
equivalent because each stands for 0@ @@@.

TABLE 1-1. NUMBER CODES

Decimal Pebbles Binary
0 None 0
1 o 1
2 o0 10
3 000 11
4 0000 100
5 00000 101
6 000000 110
7 0000000 111
8 00000000 1000
9 000000000 1001




Equivalence is the common ground between us and
computers; it tells us when we’re talking about the same
thing. If a computer comes up with a binary answer of 101,
equivalence means that the decimal answer is 5. As a start
to understanding computers, memorize the binary-decimal
equivalences of Table 1-1.

EXAMPLE 1-1

Figure 1-1a shows four light-emitting diodes (LEDs). A
dark circle means that the LED is off; a light circle means
it’s on. To read the display, use this code:

O O

fa) {b)
Fig. 1-1 LED display of binary numbers.

LED Binary

Off 0
On 1

What binary number does Fig. 1-1a indicate? Fig. 1-157

SOLUTION

Figure 1-1a shows off-off-on-on. This stands for binary
0011, equivalent to decimal 3.

Figure 1-15 is off-on-off-on, decoded as binary 0101 and
equivalent to decimal 5.

EXAMPLE 1-2

A binary odometer has four wheels. What are the successive
binary numbers?

SOLUTION

As previously discussed, the first eight binary numbers are
0000, 0001, 0010, 0011, 0100, 0101, 0110, and 0111. On
the next count, the three wheels on the right reset and carry;
the fourth wheel advances by one. So the next eight numbers
are 1000, 1001, 1010, 1011, 1100, 1101, 1110, and 1111.
The final reading of 1111 is equivalent to decimal 15. The
next mile resets all wheels to 0, and the cycle repeats.
Being able to count in binary from 0000 to 1111 is
essential for understanding the operation of computers.

TABLE 1-2. BINARY-TO-DECIMAL

EQUIVALENCES
Decimal Binary Decimal Binary
0 0000 8 1000
1 0001 9 1001
2 0010 10 1010
3 0011 11 1011
4 0100 12 1100
5 0101 13 1101
6 0110 14 1110
7 0111 15 1111

Therefore, you should memorize the equivalences of Table
1-2.

1-4 WHY BINARY NUMBERS
ARE USED

The word *‘computer’ is misleading because it suggests a
machine that can solve only numerical problems. But a
computer is more than an automatic adding machine. It can
play games, translate languages, draw pictures, and so on.
To suggest this broad range of application, a computer is
often referred to as a data processor.

Program and Data

Data means names, numbers, facts, anything needed to
work out a problem. Data goes into a computer, where it
is processed or manipulated to get new information. Before
it goes into a computer, however, the data must be coded
in binary form. The reason was given earlier; a computer’s
circuits can respond only to binary numbers.

Besides the data, someone has to work out a program,
a list of instructions telling the computer what to do. These
instructions spell out each and every step in the data
processing. Like the data, the program must be coded in
binary form before it goes into the computer.

So the two things we must input to a computer are the
program and the data. These are stored inside the computer
before the processing begins. Once the computer run starts,
each instruction is executed and the data is processed.

Hardware and Software

The electronic, magnetic, and mechanical devices of a
computer are known as hardware. Programs are called
software. Without software, a computer is a pile of *‘dumb’’
metal.
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An analogy may help. A phonograph is like hardware
and records are like software. The phonograph is useless
without records. Furthermore, the music you get depends
on the record you play. A similar idea applies to computers.
A computer is the hardware and programs are the software.
The computer is useless without programs. The program
stored in the computer determines what the computer will
do; change the program and the computer processes the
data in a different way.

Transistors

Computers use integrated circuits (ICs) with thousands of
transistors, either bipolar or MOS. The parameters (B,
Ico, g, €tc.) can vary more than 50 percent with temperature
change and from one transistor to the next. Yet these
computer ICs work remarkably well despite the transistor
variations. How is it possible?

The answer is two-state design, using only two points
on the load line of each transistor. For instance, the common
two-state design is the cutoff-saturation approach; each
transistor is forced to operate at either cutoff or saturation.
When a transistor is cut off or saturated, parameter variations
have almost no effect. Because of this, it’s possible to
design reliable two-state circuits that are almost independent
of temperature change and transistor variations.

Transistor Register

Here’s an example of two-state design. Figure 1-2 shows
a transistor register. (A register is a string of devices that
store data.) The transistors on the left are cut off because
the input base voltages are 0 V. The dark shading symbolizes
the cutoff condition. The two transistors on the right have
base drives of 5 V.

The transistors operate at either saturation or cutoff. A
base voltage of 0 V forces each transistor to cut off, while
a base voltage of 5 V drives it into saturation. Because of
this two-state action, each transistor stays in a given state
until the base voltage switches it to the opposite state.

Another Code

Two-state operation is universal in digital electronics. By
deliberate design, all input and output voltages are either
low or high. Here’s how binary numbers come in: low
voltage represents binary 0, and high voltage stands for
binary 1. In other words, we use this code:

Voltage Binary
Low 0
High 1

For instance, the base voltages of Fig. 1-2 are low-low-
high-high, or binary 0011. The collector voltages are high-
high-low-low, or binary 1100. By changing the base voltages
we can store any binary number from 0000 to 1111 (decimal
0 to 15).

Bit

Bir is an abbreviation for binary digit. A binary number
like 1100 has 4 bits; 110011 has 6 bits; and 11001100 has
8 bits. Figure 1-2 is a 4-bit register. To store larger binary
numbers, it needs more transistors. Add two transistors and
you get a 6-bit register. With four more transistors, you’d
have an 8-bit register.

Nonsaturated Circuits

Don’t get the idea that all two-state circuits switch between
cutoff and saturation. When a bipolar transistor is heavily
saturated, extra carriers are stored in the base region. If the
base voltage suddenly switches from high to low, the
transistor cannot come out of saturation until these extra
carriers have a chance to leave the base region. The time
it takes for these carriers to leave is called the saturation
delay time t,. Typically, ¢, is in nanoseconds.

In most applications the saturation delay time is too short
to matter. But some applications require the fastest possible

ov
Fig. 1-2 Transistor register.
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switching time. To get this maximum speed, designers have
come up with circuits that switch from cutoff (or near
cutoff) to a higher point on the load line (but short of
saturation). These nonsaturated circuits rely on clamping
diodes or heavy negative feedback to overcome transistor
variations.

Remember this: whether saturated or nonsaturated circuits
are used, the transistors switch between distinct points on
the load line. This means that all input and output voltages
are easily recognized as low or high, binary O or binary 1.

poeH

/ / / /
fa)
(b)
Fig. 1-3 Core register.

Magnetic Cores

Early digital computers used magnetic cores to store data.
Figure 1-3a shows a 4-bit core register. With the right-
hand rule, you can see that conventional current into a wire
produces a clockwise flux; reversing the current gives a
counterclockwise flux. (The same result is obtained if
electron-flow is assumed and the left-hand rule is used.)

The cores have rectangular hysteresis loops; this means
that flux remains in a core even though the magnetizing
current is removed (see Fig. 1-3b). This is why a core
register can store binary data indefinitely. For instance,
let’s use the following code:

Flux Binary
Counterclockwise 0
Clockwise 1

Then, the core register of Fig. 1-3b stores binary 1001,
equivalent to decimal 9. By changing the magnetizing
currents in Fig. 1-3a we can change the stored data.

To store larger binary numbers, add more cores. Two
cores added to Fig. 1-3a result in a 6-bit register; four more
cores give an 8-bit register.

The memory is one of the main parts of a computer.
Some memories contain thousands of core registers. These
registers store the program and data needed to run the
computer.

Other Two-State Examples

The simplest example of a two-state device is the on-off
switch. When this switch is closed, it represents binary 1;
when it’s open, it stands for binary 0.

Punched cards are another example of the two-state
concept. A hole in a card stands for binary 1, the absence
of a hole for binary 0. Using a prearranged code, a card-
punch machine with a keyboard can produce a stack of
cards containing the program and data needed to run a
computer.

Magnetic tape can also store binary numbers. Tape
recorders magnetize some points on the tape (binary 1),
while leaving other points unmagnetized (binary 0). By a
prearranged code, a row of points represents either a coded
instruction or data. In this way, a reel of tape can store
thousands of binary instructions and data for later use in a
computer.

Even the lights on the control panel of a large computer
are binary; a light that’s on stands for binary 1, and one
that’s off stands for binary 0. In a 16-bit computer, for
instance, a row of 16 lights allows the operator to see the
binary contents in different computer registers. The operator
can then monitor the overall operation and, when necessary,
troubleshoot.

In summary, switches, transistors, cores, cards, tape,
lights, and almost all other devices used with computers
are based on two-state operation. This is why we are forced
to use binary numbers when analyzing computer action.

EXAMPLE 1-3

Figure 1-4 shows a strip of magnetic tape. The black circles
are magnetized points and the white circles unmagnetized
points. What binary number does each horizontal row
represent?

[olelelN W N N J
e0000CO8O®O0
L ol N Mol N N J
OOCeeo00Oe®
L Mool N Mol
(ol Nelol NoloN )
L NN N Mol J
| A~ N

Fig. 1-4 Binary numbers on magnetic tape.

SOLUTION

The tape stores these binary numbers;

Row 1 00001111 Row 5 11100110
Row 2 10000110 Row 6 01001001
Row 3 10110111 Row 7 11001101
Row 4 00110001

Chapter 1 Number Systems and Codes 5




(Note: these binary numbers may represent either coded
instructions or data.)

A string of 8 bits is called a byte. In this example, the
magnetic tape stores 7 bytes. The first byte (row 1) is
00001111. The second byte (row 2) is 10000110. The third
byte is 10110111. And so on.

A byte is the basic unit of data in computers. Most
computers process data in strings of 8 bits or some multiple
(16, 24, 32, and so on). Likewise, the memory stores data
in strings of 8 bits or some multiple of 8 bits.

1-5 BINARY-TO-DECIMAL
CONVERSION

You already know how to count to 15 using binary numbers.
The next thing to learn is how to convert larger binary
numbers to their decimal equivalents.

5 7 0 3 4 1 1 0 0 1

10* 10 10?2 10! ag® 2 2% 22 2 f
fa) (b)
Fig. 1-5 (a) Decimal weights; (b) binary weights.

Decimal Weights

The decimal number system is an example of positional
notation; each digit position has a weight or value. With
decimal numbers the weights are units, tens, hundreds,
thousands, and so on. The sum of all digits multiplied by
their weights gives the total amount being represented.
For instance, Fig. 1-5a illustrates a decimal odometer.
Below each digit is its weight. The digit on the right has a
weight of 10° (units), the second digit has a weight of 10!
(tens), the third digit a weight of 102 (hundreds), and so
forth. The sum of all units multiplied by their weights is

(5 X 10% + (7 X 103 + (0 x 10 + (3 x 109
+ (4 X 10% = 50,000 + 7000 + 0 + 30 + 4
= 57,034

Binary Weights

Positional notation is also used with binary numbers because
each digit position has a weight. Since only two digits are
used, the weights are powers of 2 instead of 10. As shown
in the binary odometer of Fig. 1-5b, these weights are 20
(units), 2' (twos), 22 (fours), 2° (eights), and 2¢ (sixteens).
If longer binary numbers are involved, the weights continue
in ascending powers of 2.

The decimal equivalent of a binary number equals the
sum of all binary digits multiplied by their weights. For
instance, the binary reading of Fig. 1-5b has a decimal
equivalent of
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(1 X 2% 4+ (1 X 2% + (0 X 22 + (0 x 2
+(1X2)=16+8+0+0+1=25

Binary 11001 is therefore equivalent to decimal 25.
As another example, the byte 11001100 converts to
decimal as follows:

(1 X274+ (1 X 26 4+ (0 %29 + 0 x 29
+ (1 xX2) 4+ (1 X2+ O x2H)+(0 x 29
=12864+64+0+0+8+4+0+0=204

So, binary 11001100 is equivalent to decimal 204.

Fast and Easy Conversion

Here’s a streamlined way to convert a binary number to its
decimal equivalent:

1. Write the binary number.

2. Write the weights 1, 2, 4, 8, . . .
digits.

3. Cross out any weight under a 0.

4. Add the remaining weights.

, under the binary

For instance, binary 1101 converts to decimal as follows:

1. 1 1 0 1 (Write binary number)
2. 8 4 2 1 (Write weights)

3.8 4 ¢ 1 (Cross out weights)

4. 84+44+0+1=13 (Add weights)

You can compress the steps even further:

1 1 0 1 (Step 1)
8 4 2 1—13 (Steps 2to 4)

As another example, here’s the conversion of binary
1110101 in compressed form:

1 1 1 01 0 1
64 32 16 8 4 2 1> 117

Base or Radix

The base or radix of a number system equals the number
of digits it has. Decimal numbers have a base of 10 because
digits O through 9 are used. Binary numbers have a base
of 2 because only the digits O and 1 are used. (In terms of
an odometer, the base or radix is the number of digits on
each wheel.)

A subscript attached to a number indicates the base of
the number. 100, means binary 100. On the other hand,
100,, stands for decimal 100. Subscripts help clarify equa-
tions where binary and decimal numbers are mixed. For
instance, the last two examples of binary-to-decimal con-
version can be written like this:



11012 = 1310
11101012 = 1]710

In this book we will use subscripts when necessary for
clarity.

1-6 MICROPROCESSORS

What is inside a computer? What is a microprocessor? What
is a microcomputer?

Computer

The five main sections of a computer are input, memory,
arithmetic and logic, control, and output. Here is a brief
description of each.

Input This consists of all the circuits needed to get
programs and data into the computer. In some computers
the input section includes a typewriter keyboard that converts
letters and numbers into strings of binary data.

Memory This stores the program and data before the
computer run begins. It also can store partial solutions
during a computer run, similar to the way we use a scratchpad
while working out a problem.

Control This is the computer’s center of gravity, analo-
gous to the conscious part of the mind. The control section
directs the operation of all other sections. Like the conductor
of an orchestra, it tells the other sections what to do and
when to do it.

Arithmetic and logic This is the number-crunching sec-
tion of the machine. It can also make logical decisions.
With control telling it what to do and with memory feeding
it data, the arithmetic-logic unit (ALU) grinds out answers
to number and logic problems.

Output This passes answers and other processed data to
the outside world. The output section usually includes a
video display to allow the user to see the processed data.

Microprocessor

The control section and the ALU are often combined
physically into a single unit called the central processing
unit (CPU). Furthermore, it’s convenient to combine the
input and output sections into a single unit called the input-
output (I/O) unir. In earlier computers, the CPU, memory,
and I/O unit filled an entire room.

With the advent of integrated circuits, the CPU, memory,
and I/O unit have shrunk dramatically. Nowadays the CPU
can be fabricated on a single semiconductor chip called a
microprocessor. In other words, a microprocessor is nothing
more than a CPU on a chip.

Likewise, the I/O circuits and memory can be fabricated
on chips. In this way, the computer circuits that once filled
a room now fit on a few chips.

Microcomputer

As the name implies, a microcomputer is a small computer,
More specifically, a microcomputer is a computer that uses
a microprocessor for its CPU. The typical microcomputer
has three kinds of chips: microprocessor (usually one chip),
memory (several chips), and /O {(one or more chips).

If a small memory is acceptable, a manufacturer can
fabricate all computer circuits on a single chip. For instance,
the 8048 from Intel Corporation is a one-chip microcomputer
with an 8-bit CPU, 1,088 bytes of memory, and 27 1/O
lines.

Powers of 2

Microprocessor design started with 4-bit devices, then
evolved to 8- and 16-bit devices. In our later discussions
of microprocessors, powers of 2 keep coming up because
of the binary nature of computers. For this reason, you
should study Table 1-3. It lists the powers of 2 encountered
in microcomputer analysis. As shown, the abbreviation K
stands for 1,024 (approximately 1,000).%¥ Therefore, 1K
means 1,024, 2K stands for 2,048, 4K for 4,096, and so
on.

Most personal microcomputers have 640K (or greater)
memories that can store 655,360 bytes (or more).

TABLE 1-3. POWERS OF 2

Powers of 2  Decimal equivalent Abbreviation

20 1

21 2

22 4

23 8

24 16

25 32

26 64

27 128

28 256

2° 512

210 1,024 1K
pAL 2,048 2K
212 4,096 4K
213 8,192 8K
214 16,384 16K
215 32,768 32K
216 65,536 64K

T The abbreviations 1K, 2K, and so on, became established
before K- for kilo- was in common use. Retaining the capital K
serves as a useful reminder that K only approximates 1,000.

Chapter 1 Number Systems and Codes 7




1-7 DECIMAL-TO-BINARY
CONVERSION

Next, you need to know how to convert from decimal to
binary. After you know how it’s done, you will be able to
understand how circuits can be built to convert decimal
numbers into binary numbers.

Double-Dabble

Double-dabble is a way of converting any decimal number
to its binary equivalent. It requires successive division by
2, writing down each quotient and its remainder. The
remainders are the binary equivalent of the decimal number.
The only way to understand the method is to go through
an example, step by step.

Here is how to convert decimal 13 to its binary equivalent.
Step 1. Divide 13 by 2, writing your work like this:

6 1 — (first remainder)

2313

The quotient is 6 with a remainder of 1.
Step 2. Divide 6 by 2 to get

3 0 — (second remainder)

2)6 1
2)13

This division gives 3 with a remainder of 0.
Step 3. Again you divide by 2:

1 1 — (third remainder)
2)3 0
2)6 1
213

Here you get a quotient of 1 and a remainder of 1.
Step 4. One more division by 2 gives

Read
down
0 1

2)1 1
2)3 0
26
2)13

—_—
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In this final division, 2 does not divide into 1; therefore,
the quotient is 0 with a remainder of 1.

Whenever you arrive at a quotient of 0 with a remainder
of 1, the conversion is finished. The remainders when read
downward give the binary equivalent. In this example,
binary 1101 is equivalent to decimal 13.

Double-dabble works with any decimal number. Pro-
gressively divide by 2, writing each quotient and its
remainder. When you reach a quotient of 0 and a remainder
of 1, you are finished; the remainders read downward are
the binary equivalent of the decimal number.

Streamlined Double-Dabble

There’s no need to keep writing down 2 before each division
because you’re always dividing by 2. From now on, here’s
how to show the conversion of decimal 13 to its binary
equivalent:

e = s e

EXAMPLE 1-4

Convert decimal 23 to binary.

SOLUTION

The first step in the conversion looks like this:

11
2723

After all divisions, the finished work looks like this:

= s s e

—_—

1

2)23

This says that binary 10111 is equivalent to decimal 23.




1-8 HEXADECIMAL NUMBERS

Hexadecimal numbers are extensively used in micropro-
cessor work. To begin with, they are much shorter than
binary numbers. This makes them easy to write and
remember. Furthermore, you can mentally convert them to
binary form whenever necessary.

An Unusual Odometer

Hexadecimal means 16. The hexadecimal number system
has a base or radix of 16. This means that it uses 16 digits
to represent all numbers. The digits are O through 9, and
A through F as follows: 0, 1,2,3,4,5,6,7,8,9, A, B,
C, D, E, and F. Hexadecimal numbers are strings of these
digits like 8AS, 4CF7, and ECSS.

An easy way to understand hexadecimal numbers is to
visualize a hexadecimal odometer. Each wheel has 16 digits
on its circumference. As it turns, it displays O through 9
as before. But then, instead of resetting, it goes on to
display A, B, C, D, E, and F.

The idea of reset and carry applies to a hexadecimal
odometer. When a wheel turns from F back to 0, it forces
the next higher wheel to advance by 1. In other words,
when a wheel runs out of hexadecimal digits, it resets and
carries.

If used in a car, a hexadecimal odometer would count
as follows. When the car is new, the odometer shows all
Os:

0000 (zero)

The next 9 miles produce readings of

0001 (one)
0002 (two)
0003 (three)
0004 (four)
0005 (five)
0006 (six)
0007 (seven)
0008 (eight)
0009 (nine)

The next 6 miles give

000A (ten)
000B (eleven)
000C (twelve)
000D (thirteen)
000E (fourteen)
000F (fifteen)

At this point the least significant wheel has run out of
digits. Therefore, the next mile forces a reset-and-carry to
get

0010 (sixteen)

The next 15 miles produce these readings: 0011, 0012,
0013, 0014, 0015, 0016, 0017, 0018, 0019, 001A, 001B,
001C, 001D, OO1E, and OOIF. Once again, the least
significant wheel has run out of digits. So, the next mile
results in a reset-and-carry:

0020 (thirty-two)

Subsequent readings are 0021, 0022, 0023, 0024, 0025,
0026, 0027, 0028, 0029, 002A, 002B, 002C, 002D, 002E,
and 002F.

You should have the idea by now. Each mile advances
the least significant wheel by 1. When this wheel runs out
of hexadecimal digits, it resets and carries. And so on for
the other wheels. For instance, if the odometer reading is

835F

the next reading is 8360. As another example, given
SFFF

the next hexadecimal number is 6000.

Equivalences

Table 1-4 shows the equivalences between hexadecimal,
binary, and decimal digits. Memorize this table. It’s essential
that you be able to convert instantly from one system to
another.

TABLE 1-4. EQUIVALENCES

Hexadecimal  Binary Decimal
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
A 1010 10
B 1011 11
C 1100 12
D 1101 13
E 1110 14
F 1111 15
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1-9 HEXADECIMAL-BINARY
CONVERSIONS

After you know the equivalences of Table 1-4, you can
mentally convert any hexadecimal string to its binary
equivalent and vice versa.

Hexadecimal to Binary

To convert a hexadecimal number to a binary number,
convert each hexadecimal digit to its 4-bit equivalent, using
Table 1-4. For instance, here’s how 9AF converts to binary:

9 A F

ol
1001 1010 1111

As another example, C5E2 converts like this:

C 5 E 2

ool
1100 0101 1110 0010

Incidentally, for easy reading it’s common practice to leave
a space between the 4-bit strings. For example, instead of
writing

C5E2,¢ = 1100010111100010,

we can write

CSE2,, = 1100 0101 1110 0010,

Binary to Hexadecimal

To convert in the opposite direction, from binary to
hexadecimal, you again use Table 1-4. Here are two
examples. The byte 1000 1100 converts as follows:

1000 1100
oo
8 C

The 16-bit number 1110 1000 1101 0110 converts like this:

1110 1000 1101 0110

R A
E 8 D 6

In both these conversions, we start with a binary number
and wind up with the equivalent hexadecimal number.
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EXAMPLE 1-5

Solve the following equation for x:

xe = 1111 1111 1111 1111,

SOLUTION

This is the same as asking for the hexadecimal equivalent
of binary 1111 1111 1111 1111. Since hexadecimal F is
equivalent to 1111, x = FFFF. Therefore,

FFFF,, = 1111 1111 1111 1111,

EXAMPLE 1-6

As mentioned earlier, the memory contains thousands of
registers (core or semiconductor) that store the program and
data needed for a computer run. These memory registers
are known as memory locations. A typical microcomputer
may have up to 65,536 memory locations, each storing 1
byte.

Suppose the first 16 memory locations contain these
bytes:

0011 1100
1100 1101
0101 0111
0010 1000
1111 0001
0010 1010
1101 0100
0100 0000
0111 0111
1100 0011
1000 0100
0010 1000
0010 0001
0011 1010
0011 1110
0001 1111

Convert these bytes to their hexadecimal equivalents.

SOLUTION

Here are the stored bytes and their hexadecimal equivalents:

Memory Contents Hex Equivalents

0011 1100 3C
1100 1101 CD
0101 0111 57
0010 1000 28
1111 0001 F1



0010 1010 2A

1101 0100 D4
0100 0000 40
0111 0111 77
1100 0011 C3
1000 0100 84
0010 1000 28
0010 0001 21
0011 1010 3A
0011 1110 3E
0001 1111 IF

What’s the point of this example? When talking about
the contents of a computer memory, we can use either
binary numbers or hexadecimal numbers. For instance, we
can say that the first memory location contains 0011 1100,
or we can say that it contains 3C. Either string gives the
same information. But notice how much easier it is to say,
write, and think 3C than it is to say, write, and think 0011
1100. In other words, hexadecimal strings are much easier
for people to work with. This is why everybody working
with microprocessors uses hexadecimal notation to represent
particular bytes.

What we have just done is known as chunking, replacing
longer strings of data with shorter ones. At the first memory
location we chunk the digits 0011 1100 into 3C. At the
second memory location we chunk the digits 1100 1101
into CD, and so on.

EXAMPLE 1-7

The typical microcomputer has a typewriter keyboard that
allows you to enter programs and data; a video screen
displays answers and other information.

Suppose the video screen of a microcomputer displays
the hexadecimal contents of the first eight memory locations
as

A7
28
C3
19
5A
4D
2C
F8

What are the binary contents of the memory locations?

SOLUTION

Convert from hexadecimal to binary to get

1010 0111
0010 1000

1100 0011
0001 1001
0101 1010
0100 1101
0010 1100
1111 1000

The first memory location stores the byte 1010 0111, the
second memory location stores the byte 0010 1000, and so
on.

This example emphasizes a widespread industrial prac-
tice. Microcomputers are programmed to display chunked
data, often hexadecimal. The user is expected to know
hexadecimal-binary conversions. In other words, a computer
manufacturer assumes that you know that A7 represents
1010 0111, 28 stands for 0010 1000, and so on.

One more point. Notice that each memory location in
this example stores 1 byte. This is typical of first-generation
microcomputers because they use 8-bit microprocessors.

1-10 HEXADECIMAL-TO-DECIMAL
CONVERSION

You often need to convert a hexadecimal number to its
decimal ‘equivalent. This section discusses methods for
doing it.

Hexadecimal to Binary to Decimal

One way to convert from hexadecimal to decimal is the
two-step method of converting from hexadecimal to binary
and then from binary to decimal. For instance, here’s how
to convert hexadecimal 3C to its decimal equivalent.

Step 1. Convert 3C to its binary equivalent:

3 C
! l
0011 1100

Step 2. Convert 0011 1100 to its decimal equivalent:

0o 0 1 1 1100
128 64 32 16 8 4 71 [—60

Therefore, decimal 60 is equivalent to hexadecimal 3C. As
an equation,

3C16 = 0011 11002 = 60]0

Positional-Notation Method

Positional notation is also used with hexadecimal numbers
because each digit position has a weight. Since 16 digits
are used, the weights are the powers of 16. As shown in

Chapter 1 Number Systems and Codes 11




F 8 E 6

16° 162 16" 16?
Fig. 1-6 Hexadecimal weights.

the hexadecimal odometer of Fig. 1-6, the weights are 169,
16', 162, and 16°. If longer hexadecimal numbers are
involved, the weights continue in ascending powers of 16.

The decimal equivalent of a hexadecimal string equals
the sum of all hexadecimal digits multiplied by their weights.
(In processing hexadecimal digits A through F, use 10
through 15.) For instance, the hexadecimal reading of Fig.
1-6 has a decimal equivalent of

(F X 16%) + (8 X 16%) + (E X 16') + (6 x 16%
= (15 X 16%) + (8 X 16%) + (14 X 16") + (6 x 16

= 61,440 + 2,048 + 224 + 6
= 63,718

In other words,

F8E616 = 63,718]0

0000 3C 4 0000 3
0001 CD

0002 57

0003 28

0004 F1

0005 2A

0006 D4

0007 40 16 65,536
0008 77 locations locations
0009 Cc3

000A 84

000B 28

000C 21

000D 3A

00CE 3E

O000F 1F 1 FFFF Y

fa) (b)
Fig. 1-7 (a) First 16 words in memory; (b) 64K memory.

Memory Locations and Addresses

If a certain microcomputer has 64K memory, meaning
65,536 memory locations, each is able to store 1 byte. The
different memory locations are identified by hexadecimal
numbers called addresses. For instance, Fig. 1-7a shows
the first 16 memory locations; their addresses are from 0000
to O0OF.

The address of a memory location is different from its
stored contents, just as a house address is different from
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the people living in the house. Figure 1-7a emphasizes the
point. At address 0000 the stored contents are 3C (equivalent
to 0011 1100). At address 0001 the stored contents are CD,
at address 0002 the stored contents are 57, and so on.

Figure 1-7b shows how to visualize a 64K memory. The
first address is 0000, and the last is FFFF.

Table of Binary-Hexadecimal-Decimal
Equivalents

A 64K memory has 65,536 hexadecimal addresses from
0000 to FFFF. The equivalent binary addresses are from

0000 0000 0000 0000
to

PIT1 1111 1111 1111

The first 8 bits are called the upper byte (UB); the second
8 bits are the lower byte (LB). If you have to do a lot of
binary-hexadecimal-decimal conversions, use the table of
equivalents in Appendix 2, which shows all the values for
a 64K memory.

Appendix 2 has four headings: binary, hexadecimal, UB
decimal, and LB decimal. Given a 16-bit address, you
convert the upper byte to its decimal equivalent (UB
decimal), the lower byte to its decimal equivalent (LB
decimal), and then add the two decimal equivalents. For
instance, suppose you want to convert

1101 0111 1010 0010

to its decimal equivalent. The upper byte is 1101 0111, or
hexadecimal D7; the lower byte is 1010 0010, or A2. Using
Appendix 2, find D7 and its UB decimal equivalent

D7 — 55,040
Next, find A2 and its LB decimal equivalent
A2 — 162
Add the UB and LB decimal equivalents to get
55,040 + 162 = 55,202

This is the decimal equivalent of hexadecimal D7A2 or
binary 1101 0111 1010 0010.

Once familiar with Appendix 2, you will find it enor-
mously helpful. It is faster, more accurate, and less tiring
than other methods. The only calculation required is adding
the UB and LB decimal, easily done mentally, with pencil
and paper, or if necessary, on a calculator. Furthermore, if
you are interested in converting only the lower byte, no
calculation is required, as shown in the next example.



EXAMPLE 1-8

Convert hexadecimal 7E to its decimal equivalent.

SOLUTION

EXAMPLE 1-9

Convert decimal 141 to hexadecimal.

SOLUTION

When converting only a single byte, all you are dealing
with is the lower byte. With Appendix 2, look up 7E and
its LB decimal equivalent to get

7E — 126

In other words, Appendix 2 can be used to convert single
bytes to their decimal equivalents (LB decimal) or double
bytes to their decimal equivalents (UB decimal + LB
decimal).

1-11 DECIMAL-TO-HEXADECIMAL
CONVERSION

One way to perform decimal-to-hexadecimal conversion is
to go from decimal to binary then to hexadecimal. Another
way is hex-dabble. The idea is to divide successively by
16, writing down the remainders. (Hex-dabble is like double-
dabble except that 16 is used for the divisor instead of 2.)

Here’s an example of how to convert decimal 2,479 into
hexadecimal form. The first division is

154 15 F
16 ) 2,479

The next step is

9 10 A
) 154 15 F
16 2,479

The final step is

Read
down
0 9 9
)9 10 A
) 154 15
16 ) 2,479

Notice how similar hex-dabble is to double-dabble. Also,
remainders greater than 9 have to be changed to hexadecimal
digits (10 becomes A, 15 becomes F, etc.).

If you prefer, use Appendix 2 to look up the decimal-
hexadecimal equivalents. The next two examples show
how.

Whenever the decimal number is between 0 and 255, all
you have to do is look up the decimal number and its
hexadecimal equivalent. With Appendix 2, you can see at
a glance that

8D « 141

EXAMPLE 1-10

Convert decimal 36,020 to its hexadecimal equivalent.

SOLUTION

If the decimal number is between 256 and 65,535, you
need to proceed as follows. First, locate the largest UB
decimal that is less than 36,020. In Appendix 2, the largest
UB decimal is

UB decimal = 35,840
which has a hexadecimal equivalent of
8C « 35,840

This is the upper byte.
Next, subtract the UB decimal from the original decimal
number:

36,020 — 35,840 = 180
The difference 180 has a hexadecimal equivalent
B4 « 180

This is the lower byte.

By combining the upper and lower bytes, we get the
complete answer: 8CB4. This is the hexadecimal equivalent
of 36,020.

After a little practice, you will find Appendix 2 to be
one of the fastest methods of decimal-hexadecimal conver-
sion.

1-12 BCD NUMBERS

A nibble is a string of 4 bits. Binary-coded-decimal (BCD)
numbers express each decimal digit as a nibble. For instance,
decimal 2,945 converts to a BCD number as follows:
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2 9 4 5

L

0010 1001 0100 0101

As you see, each decimal digit is coded as a nibble.
Here’s another example: 9,863, converts like this:

9 8 6 3

ol b
1001 1000 0110 0011

Therefore, 1001 1000 0110 0011 is the BCD equivalent of
9,863,.

The reverse conversion is similar. For instance, 0010
1000 0111 0100 converts as follows:

0010 1000 0111 0100

Vol b
2 8 71 4

Applications

BCD numbers are useful wherever decimal information is
transferred into or out of a digital system. The circuits
inside pocket calculators, for example, can process BCD
numbers because you enter decimal numbers through the
keyboard and see decimal answers on the LED or liquid-
crystal display. Other examples of BCD systems are elec-
tronic counters, digital voltmeters, and digital clocks; their
circuits can work with BCD numbers.

BCD Computers

BCD numbers have limited value in computers. A few
early computers processed BCD numbers but were slower
and more complicated than binary computers. As previously
mentioned, a computer is more than a number cruncher
because it must handle names and other nonnumeric data.
In other words, a modern computer must be able to process
alphanumerics (alphabet letters, numbers, and other sym-
bols). This why modern computers have CPUs that process
binary numbers rather than BCD numbers.

Comparison of Number Systems

Table 1-5 shows the four number systems we have discussed.
Each number system uses strings of digits to represent
quantity. Above 9, equivalent strings appear different. For
instance, decimal string 128, hexadecimal string 80, binary
string 1000 0000, and BCD string 0001 0010 1000 are
equivalent because they represent the same number of
pebbles.

Machines have to use long strings of binary or BCD
numbers, but people prefer to chunk the data in either
decimal or hexadecimal form. As long as we know how to
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TABLE 1-5. NUMBER SYSTEMS

Decimal Hexadecimal  Binary BCD

0 0 0000 0000 0000 0000 0000

1 1 (0000 0001 0000 0000 0001

2 2 0000 0010 0000 0000 0010

3 3 0000 0011 0000 0000 0011

4 4 0000 0100 0000 0000 0100

5 5 0000 0101 0000 0000 0101

6 6 0000 0110 0000 0000 0110

7 7 0000 0111 0000 0000 0111

8 8 0000 1000 0000 0000 1000

9 9 0000 1001 0000 0000 1001
10 A 0000 1010 0000 0001 0000
11 B 0000 1011 0000 0001 0001
12 C 0000 1100 0000 0001 0010
13 D 0000 1101 0000 0001 0011
14 E 0000 1110 0000 0001 0100
15 F 0000 1111 0000 0001 0101
16 10 0001 0000 0000 0001 0110
32 20 0010 0000 0000 0011 0010
64 40 0100 0000 0000 0110 0100
128 80 1000 0000 0001 0010 1000
255 FF 1111 1111 0010 0101 0101

convert from one number system to the next, we can always
get back to the ultimate meaning, which is the number of
pebbles being represented.

1-13 THE ASCII CODE

To get information into and out of a computer, we need to
use numbers, letters, and other symbols. This implies some
kind of alphanumeric code for the I/O unit of a computer.
At one time, every manufacturer had a different code,
which led to all kinds of confusion. Eventually, industry
settled on an input-output code known as the American
Standard Code for Information Interchange (abbreviated
ASCII). This code allows manufacturers to standardize
/O hardware such as keyboards, printers, video displays,
and so on.

The ASCII (pronounced ask'-ee) code is a 7-bit code
whose format (arrangement) is

XXX, XXX, Xo
where each X is a O or a 1. For instance, the letter A is
coded as
1000001

Sometimes, a space is inserted for easier reading:

100 0001



TABLE 1-6. THE ASCII CODE

010 011 100 101 110 111

X,X,X, X,

0000 SP
0001 !
0010 !
0011 #
0100 $
0101 %
0110 &
011t ’
1000 (
1001 )
1010 *
1011 +
1100 ,
1101 -
1110 .
1111 /

O oo ~IAUN A WN—O

OZZrrR—=—IQmmUOwWPR
N=<XId<co3wn oo

© 83 B —®= =00 0 A0 T
N X £ < € ~+~»n 10T

SVl A

Table 1-6 shows the ASCII code. Read the table the
same as a graph. For instance, the letter A has an XXX,
of 100 and an X;X,X X, of 0001. Therefore, its ASCII
code is

100 0001 (A)
Table 1-6 includes the ASCII code for lowercase letters.
The letter a is coded as

110 0001 (a)

More examples are

1100010 (b)
1100011 (c)
1100100 (d)

and so on.

Also look at the punctuation and mathematical symbols.
Some examples are

0100100 (%)
0101011  (+)
0111101 (=)

In Table 1-6, SP stands for space (blank). Hitting the space
bar of an ASCII keyboard sends this into a microcomputer:

010 0000 (space)

EXAMPLE 1-11

With an ASCII keyboard, each keystroke produces the
ASCII equivalent of the designated character. Suppose you

type
PRINT X

What is the output of an ASCII keyboard?

SOLUTION

P (101 0000), R (101 0010), I (100 1001), N (100 1110),
T (101 0100), space (010 0000), X (101 1000).

GLOSSARY

address Each memory location has an address, analogous
to a house address. Using addresses, we can tell the computer
where desired data is stored.

alphanumeric Letters, numbers, and other symbols.
base The number of digits (basic symbols) in a number
system. Decimal has a base of 10, binary a base of 2, and
hexadecimal a base of 16. Also called the radix.

bit An abbreviation for binary digit.

byte A string of 8 bits. The byte is the basic unit of binary
information. Most computers process data with a length of
8 bits or some multiple of 8 bits.

central processing unit The control section and the arith-
metic-logic section. Abbreviated CPU.

chip An integrated circuit.

chunking Replacing a longer string by a shorter one.
data Names, numbers, and any other information needed
to solve a problem.

digital Pertains to anything in the form of digits, for
example, digital data.

hardware The electronic, magnetic, and mechanical de-
vices used in a computer.

hexadecimal A number system with a base of 16. Hexa-
decimal numbers are used in microprocessor work.
input-output Abbreviated I/0. The input and output sec-
tions of a computer are often lumped into one unit known
as the I/O unit.

microcomputer A computer that uses a microprocessor
for its central processing unit (CPU).

microprocessor A CPU on a chip. It contains the control
and arithmetic-logic sections. Sometimes abbreviated MPU
(microprocessor unit).

nibble A string of 4 bits. Half of a byte.

program A sequence of instructions that tells the computer
how to process the data. Also known as software.

register A group of electronic, magnetic, or mechanical
devices that store digital data.

software Programs.

string A group of digits or other symbols.
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SELF-TESTING REVIEW

Read each of the following and provide the missing words. 7. (4,096, 65,536) The hexadecimal number system is
Answers appear at the beginning of the next question. widely used in analyzing and programming
. Bi Bi bers h The hexadecimal digits are 0 to 9 and A to
- plhary means . - pinary numoers have a The main advantage of hexadecimal numbers is the
base of 2. The digits used in a binary number ease of conversion from hexadecimal to

2 syste.rr(l) arle N 1nd d oth " f . and vice versa.

) (th, d,t ) lames, nlll)rln ers, an 110:1 er information 8. (microprocessors, F, binary) A typical microcom-
;Ze ¢¢ to solve @ problem are CE; o tructions th i puter may have up to 65,536 registers in its mem-
¢ lle th ¢ 1sha sc(tquence N ltnhs rzctlons at ory. Each of these registers, usually called a ,
es the computer how to process the ata. stores 1 byte. Such a memory is specified as a 64-

3. (data, program) Computer ICs work reliably be- kilobyte memory, or simply a memory.
cause t.hey are based on de§1gn. When 9. (memory location, 64K) Binary-coded-decimal
a transistor is cut off or saturated, transistor (BCD) numbers express each decimal digit as a

4. (two-stat ha‘vet.alm)o i no effect. . ¢ BCD numbers are useful whenever __________in-

) d ° is ;1’ tvatrlcrzel?ir.zs't 1 dat 1s a group o formation is transferred into or out of a digital
agglce:v' " a Sf:r bi ‘Bita di gta. A byte i t1§ an ¢ system. Equipment using BCD numbers includes
reviation bits wary Gigit. yle 15 a string o pocket calculators, electronic counters, and digital
; Lo . . . voltmeters.

5. (register, Bit, 8) The control and arithmetic-logic 10. (nibble, decimal) The ASCII code is a 7-bit code
sections are called the (CPU). A micro- for (letters, numbers, and other sym-
processor is a CPU on a chip. A microcomputer bols) ’ ’

's a computer thgt Uses a4 — for its CPU. 11.  (alphanumerics) With the typical microcomputer,

6. (cent.ra‘l processing wnit, fmicrop rocesspr) The ab- you enter the program and data with typewriter
breviation K indicates units of approximately 1,000 keyboard that converts each character into ASCII
or precisely 1,024. Therefore, 1K means 1,024, 2K code
means 2,048, 4K means , and 64K ’
means

PROBLEMS
1-1. How many bytes are there in each of these num- O . Q . O O . ‘
bers? . . .
2. 1100 0101 Fig. 1-8 An 8-bit LED display.
. 1 1 . . .
2 }?H 18(1)} 8}}(1) Oi(l)g 1010 1-7. Figure 1-8 shows an 8-bit LED display. A light
’ . . circle means that a LED is ON (binary 1) and a
1-2.  What are the equivalent decimal numbers for each dark circle means a LED is oF (binary 0). What
of the following binary numbers: 10, 110, 111, . . : . L
? -
1011, 1100, and 11102 ::1 glhqullir:/aarl}é I?tl;mber being displayed? The deci
1-3. i b h ? ) .
3 :Vha;;; the base for cach of these numbers 1-8. Convert the following binary numbers to decimal
. 10 .
b. 1100 0101, Z“m‘(’)grlsil
c. B3I b. 11001
d. Fd4C3 c. 10110
1-4.  Write the equation ’
d. 11110
242 =4 1-9. Solve the following equation for x:
. ) X = 11001001,
using binary numbers.

1-5.  What is the decimal equivalent of 2'°? What does 1-10.  An 8-bit transistor register has this output:

4K represent? Express 8,192 in K units. low-high-low-high-low-highlow-hich

1-6. A 4-bit register has output voltages of high-low- ow-lgh-low-high-low-high-low-hig

high-low. What is the binary number stored in the What is the equivalent decimal number being
register? The decimal equivalent? stored?
16 Digital Computer Electronics



1-11.

lofofofofofofodo)

Fig. 1-9 An 8-bit core register.

In Fig. 1-9 clockwise flux stands for binary 1 and
counterclockwise flux for binary 0. What is the
binary number stored in the 8-bit core register?
Convert this byte to an equivalent decimal
number.

)

10k

1

10kQ 10 k§2

Fig. 1-10 A 5-bit switch register.

1-12.

1-13.
1-14.
1-15.
1-16.
1-17.

1-18.

1-19.

1-20.

o L,

Figure 1-10 shows a 5-bit switch register. By
opening and closing the switches you can set up
different binary numbers. As usual, high output
voltage stands for binary 1 and low output voltage
for binary 0. What is the binary number stored in
the switch register? The equivalent decimal num-
ber?

Convert decimal 56 to its binary equivalent.
Convert 72, to a binary number.

An 8-bit transistor register stores decimal 150.
What is the binary output of the register?

How would you set the switches of Fig. 1-10 to
get a decimal output of 27?

A hexadecimal odometer displays F52A. What are
the next six readings?

The reading on a hexadecimal odometer is 27FF.
What is the next reading? Miles later, you see a
reading of 8AFC. What are the next six readings?
Convert each of the following hexadecimal num-
bers to binary:

a. FF

b. ABC

c. CD42

d. F329

Convert each of these binary numbers to an
equivalent hexadecimal number:

a. 1110 1000

b. 1100 1011

c. 1010 1111 0110

d. 1000 1011 1101 O110

1-21.

1-22.

1-23.

1-24.

1-25.

—O+5V

10 k2

10k
Y1

1

i—" o—I—AMA

Here is a program written for the 8085 micro-
processor:

Address Hex Contents
2000 3E
2001 0E
2002 D3
2003 20
2004 76

Convert the hex contents to equivalent binary
numbers.

Convert each of these hexadecimal numbers to its
decimal equivalent:

a. FF
b. A4
c. 9B
d. 3C

Convert the following hexadecimal numbers to
their decimal equivalents:

a. OFFF
b. 3FFF
c. 7TFE4
d. B3D8

A microcomputer has memory locations from

0000 to OFFF. Each memory location stores 1

byte. In decimal, how many bytes can the micro-
computer store in its memory? How many kilo-

bytes is this?

Suppose a microcomputer has memory locations

from 0000 to 3FFF, each storing 1 byte. How

Chapter 1 Number Systems and Codes 17 ™
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1-26.

1-27.

1-28.

1-29.

1-30.

many bytes can the memory store? Express this in
kilobytes.

A microcomputer has a 32K memory. How many
bytes does this represent? If 0000 stands for the
first memory location, what is the hexadecimal
notation for the last memory location?

If a microcomputer has a 64K memory, what are
the hexadecimal notations for the first and last
memory locations?

Convert the following decimal numbers to hexa-
decimal:

a. 4,095

b. 16,383
c. 32,767
d. 65,535

Convert each of the following decimal numbers to
hexadecimal numbers:

a. 238

b. 7,547
c. 15,359
d. 47,285

How many nibbles are there in each of the fol-
lowing:

T a. 10000111 !
~b. 1001 0000 0100 0011

c. 0101 1001 0111 0010 0110 0110
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- 1-31.  If the numbers in Prob. 1-30 are BCD numbers,
, what are the equivalent decimal numbers?

1-32. What is the ASCII code for each of the following:
a. 17
b. W
c. f
d. vy

1-33.  Suppose you type LIST with an ASCII keyboard.
What is the binary output as you strike each
letter?

1-34. For each of the following rows, provide the miss-
ing numbers in the bases indicated.

Base 2 Base 10 Base 16

a. 0100 0001

b. 200

c. 3CD

d 125

e. 1101 1110 1111

f. FFFF

g. 2,000
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GATES

For centuries mathematicians felt there was a connection
between mathematics and logic, but no one before George
Boole could find this missing link. In 1854 he invented
symbolic logic, known today as boolean algebra. Each
variable in boolean algebra has either of two values: true
or false. The original purpose of this two-state algebra was
to solve logic problems.

Boolean algebra had no practical application until 1938,
when Claude Shannon used it to analyze telephone switching
circuits. He let the variables represent closed and open
relays. In other words, Shannon came up with a new
application for boolean algebra. Because of Shannon’s
work, engineers realized that boolean algebra could be
applied to computer electronics.

This chapter introduces the gate, a circuit with one or
more input signals but only one output signal. Gates are
digital (two-state) circuits because the input and output
signals are either low or high voltages. Gates are often
called logic circuits because they can be analyzed with
boolean algebra.

2-1 INVERTERS

An inverter is a gate with only one input signal and one
output signal; the output state is always the opposite of the
input state.

Transistor Inverter

Figure 2-1 shows a transistor inverter. This common-emitter
amplifier switches between cutoff and saturation. When Viy
is low (approximately 0 V), the transistor cuts off and Vgyr
is high. On the other hand, a high V| saturates the transistor,
forcing Voyr to go low.

Table 2-1 summarizes the operation. A low input produces
a high output, and a high input results in a low output.
Table 2-2 gives the same information in binary form; binary
0 stands for low voltage and binary 1 for high voltage.

An inverter is also called a NOT gate because the output
is not the same as the input. The output is sometimes called
the complement (opposite) of the input.

BV

Vout
Vin ﬁdc >10
(Oor+5V)
Fig. 2-1 Example of inverter design.
TABLE 2-1 TABLE 2-2
Vin Vour Vin Vour

Low High 0
High Low 1

1
0
Yn |>O VouT Vin 4> Vour

fa) (b)

Yin |>: |>O Your Vin | > Vour

fc) (d)

Fig. 2-2 Logic symbols: (a) inverter; (b) another inverter symbol;
(¢) double inverter; (d) buffer.

Inverter Symbol

Figure 2-2a is the symbol for an inverter of any design.
Sometimes a schematic diagram will use the alternative
symbol shown in Fig. 2-2b; the bubble (small circle) is on
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the input side. Whenever you see either of these symbols,
remember that the output is the complement of the input.

Noninverter Symbol

If you cascade two inverters (Fig. 2-2¢), you get a nonin-
verting amplifier. Figure 2-2d is the symbol for a nonin-
verting amplifier. Regardless of the circuit design, the action
is always the same: a low input voltage produces a low
output voltage, and a high input voltage resuits in a high
output voltage.

The main use of noninverting amplifier is buffering
(isolating) two other circuits. More will be said about
buffers in a later chapter.

EXAMPLE 2-1

0 0 1
cCH—— ) C —Do—

6-bit 6-bit
register ] register 1 0
o — B N

fa) {b)
Fig. 2-3 Example 2-1.

Figure 2-3a has an output, A to F, of 100101. Show how
to complement each bit.

SOLUTION

Easy. Use an inverter on each signal line (Fig. 2-3b). The
final output is now 011010.

A hex inverter is a commercially available IC containing
six separate inverters. Given a 6-bit register like Fig. 2-3a,
we can connect a hex inverter to complement each bit as
shown in Fig. 2-3b.

One more point. In Fig. 2-3a the bits may represent a
coded instruction, number, letter, etc. To convey this variety
of meaning, a string of bits is often called a binary word
or simply a word. In Fig. 2-3b the word 100101 is
complemented to get the word 011010.

2-2 OR GATES

The OR gate has two or more input signals but only one
output signal. If any input signal is high, the output signal
is high.
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Fig. 2-4 A 2-input diode OR gate.

Diode OR Gate

Figure 2-4 shows one way to build an OR gate. If both
inputs are low, the output is low. If either input is high,
the diode with the high input conducts and the output is
high. Because of the two inputs, we call this circuit a 2-
input OR gate.

Table 2-3 summarizes the action; binary 0 stands for low
voltage and binary 1 for high voltage. Notice that one or
more high inputs produce a high output; this is why the
circuit is called an OR gate.

A o
s8o—PD+—4 Y
Co—P——

Fig. 2-5 A 3-input diode ORrR gate.

More than Two Inputs

Figure 2-5 shows a 3-input OR gate. If all inputs are low,
all diodes are off and the output is low. If 1 or more inputs
are high, the output is high.

Table 2-4 summarizes the action. A table like this is
called a fruth table; it lists all the input possibilities and
the corresponding outputs. When constructing a truth table,
always list the input words in a binary progression as shown
(000, 001, 010, . . ., 111); this guarantees that all input
possibilities will be accounted for.

An OR gate can have as many inputs as desired; add one
diode for each additional input. Six diodes result in a 6-

TABLE 2-3. TABLE 2-4. THREE-
TWO INPUT INPUT or GATE
OR GATE
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input OR gate, nine diodes in a 9-input OR gate. No matter
how many inputs, the action of any OR gate is summarized
like this: one or more high inputs produce a high output.

Bipolar transistors and MOSFETs can also be used to
build OrR gates. But no matter what devices are used, OR
gates always produce a high output when one or more
inputs are high. Figure 2-6 shows the logic symbols for
2-, 3-, and 4-input OR gates.

(a) (b} fc)

Fig. 2-6 or-gate symbols.

EXAMPLE 2-2

Show the truth table of a 4-input or gate.

SOLUTION

Let Y stand for the output bit and A, B, C, D for input bits.
Then the truth table has input words of 0000, 0001, 0010,
..., 1111, as shown in Table 2-5. As expected, output Y
is O for input word 0000; Y is 1 for all other input words.

As a check, the number of input words in a truth table
always equals 2", where n is the number of input bits. A
2-input OR gate has a truth table with 22 or 4 input words;
a 3-input OR gate has 2* or 8 input words; and a 4-input
OR gate has 2% or 16 input words.

TABLE 2-5. FOUR-INPUT or

GATE
A B C D Y
0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 1
0 1 0 1 1
0 1 1 0 1
0 1 1 1 1
1 0 0 0 1
1 0 0 1 1
1 0 1 0 1
1 0 1 1 1
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

EXAMPLE 2-3

How many inputs words are in the truth table of an 8-input
OR gate? Which input words produce a high output?

SOLUTION

The input words are 0000 0000, 0000 0001, . .., 11t1
1111. With the formula of the preceding example, the total
number of input words is 2* = 2% = 256.

In any OR gate, 1 or more high inputs produce a high
output. Therefore, the input word of 0000 0000 results in
a low output; all other input words produce a high output.

EXAMPLE 2-4

+5V

Y3 Y Y Y

Fig. 2-7 Decimal-to-binary encoder.

The switches of Fig. 2-7 are push-button switches like those
of a pocket calculator. The bits out of the OR gates form a
4-bit word, designated Y,Y,Y,Y,. What does the circuit
do?

SOLUTION

Figure 2-7 is a decimal-to-binary encoder, a circuit that
converts decimal to binary. For instance, when push button
3 is pressed, the Y, and Y, OR gates have high inputs;
therefore, the output word is

Y3Y2Y1YO = 0011
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If button 5 is keyed, the Y, and Y, OR gates have high
inputs and the output word becomes

Y,;Y,Y,Y, = 0101
When switch 9 is pressed,
Y,Y,Y Y, = 1001
Check the other input switches to convince yourself that

the output word always equals the binary equivalent of the
switch being pressed.

2-3 AND GATES

The AND gate has two or more input signals but only one
output signal. All inputs must be high to get a high output.

+5V +5V

A o——4——
< Y
go——F——
fa)
+5V
Y
fc) (d)

Fig. 2-8 A 2-input AND gate. (a) circuit; (b) both inputs low; (¢)1
low input, 1 high; (d) both inputs high.

Diode AND Gate

Figure 2-8a shows one way to build an AND gate. In this
circuit the inputs can be either low (ground) or high (45
V). When both inputs are low (Fig. 2-8b), both diodes
conduct and pull the output down to a low voltage. If one
of the inputs is low and the other high (Fig. 2-8¢), the
diode with the low input conducts and this pulls the output
down to a low voltage. The diode with the high input, on
the other hand, is reverse-biased or cut off, symbolized by
the dark shading in Fig. 2-8¢.

When both inputs are high (Fig. 2-8d), both diodes are
cut off. Since there is no current in the resistor, the supply
voltage pulls the output up to a high voltage (+5 V).
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TABLE 2-6. TWO-
INPUT anp GATE

—_—_ oo [ »
—_—0 = O ]
-_0 O O e

Table 2-6 summarizes the action. As usual, binary zero
stands for low voltage and binary | for high voltage. As
you see, A and B must be high to get a high output; this is
why the circuit is called an AND gate.

BV

40——
8o0—<t— y

co—G—
Fig. 2-9 A 3-input AND gate.

More than Two Inputs

Figure 2-9 is a 3-input AND gate. If all inputs are low, all
diodes conduct and pull the output down to a low voltage.
Even one conducting diode will pull the output down to a
low voltage; therefore, the only way to get a high output
is to have all inputs high. When all inputs are high, all
diodes are nonconducting and the supply voltage pulls the
output up to a high voltage.

Table 2-7 summarizes the 3-input AND gate. The output
is O for all input words except 111. That is, all inputs must
be high to get a high output.

AND gates can have as many inputs as desired; add one
diode for each additional input. Eight diodes, for instance,
result in -an 8-input AND gate; sixteen diodes in a 16-input

TABLE 2-7. THREE-
INPUT AnD GATE

A B C Y
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1
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fa) (b) fc)
Fig. 2-10 aND-gate symbols.

[

AND gate. No matter how many inputs an AND gate has,
the action can be summarized like this: All inputs must be
high to get a high output.

Figure 2-10 shows the logic symbols for 2-, 3-, and 4-
input AND gates.

EXAMPLE 2-5

Describe the truth table of an 8-input AND gate.

SOLUTION

The input words are from 0000 0000to 1111 1111, following
the binary progression. The total number of input words is

2" = 28 = 256
The first 255 input words produce a 0 output. Only the last

word, 1111 1111, results in a 1 output. This is because all
inputs must be high to get a high output.

EXAMPLE 2-6

6-bit register
A B C D £ F
* . . TS * ENABLE |
Y5 Yy Y3 Y, Y; Y

Fig. 2-11 Using aND gates to block or transmit data.

The 6-bit register of Fig. 2-11 stores the word ABCDEF.
The ENABLE input can be low or high. What does the
circuit do?

SOLUTION

One use of AND gates is to transmit data when certain
conditions are satisfied. In Fig. 2-11 a low ENABLE blocks
the register contents from the final output, but a high
ENABLE transmits the register contents.

For instance, when
ENABLE = 0
each AND gate has a low ENABLE input. No matter what

the register contents, the output of each AND gate must be
low. Therefore, the final word is

YsY,Y.Y,Y, Y, = 000000
As you see, a low ENABLE blocks the register contents
from the final output.

On the other hand, when
ENABLE = 1

the output of each AND gate depends on the data inputs (4,
B, C, .. .); alow data input results in a low output, and
a high data input in a high output. For example, if ABCDEF
= 100100, a high ENABLE gives

YsY,Y;Y,Y, Y, = 100100

In general, a high ENABLE transmits the register contents
to the final output to get

Y,Y,Y,Y,Y,Y, = ABCDEF

2-4 BOOLEAN ALGEBRA

As mentioned earlier, Boole invented two-state algebra to
solve logic problems. This new algebra had no practical
use until Shannon applied it to telephone switching circuits.
Today boolean algebra is the backbone of computer circuit
analysis and design.

Inversion Sign

In boolean algebra a variable can be either a 0 or a 1. For
digital circuits, this means that a signal voltage can be
either low or high. Figure 2-12 is an example of a digital
circuit because the input and output voltages are either low
or high. Furthermore, because of the inversion, Y is always
the complement of A.

a—>0—

A word equation for Fig. 2-12 is

Fig. 2-12 Inverter.

Y = NOT A (2-1)
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IfAis O,

I
—_

Y = NoT 0
On the other hand, if A is 1,

0

Y =nNoT 1

In boolean algebra, the overbar stands for the NoT
operation. This means that Eq. 2-1 can be written

Y=A (2-2)
Read this as ‘‘Y equals NOT A’ or *‘Y equals the complement
of A.”” Equation 2-2 is the standard way to write the output
of an inverter.

Using the equation is easy. Given the value of A, substitute
and solve for Y. For instance, if A is O,

because NOT O is 1. On the other hand, if A is 1,
Y=4A=1=0
because NOT 1 is 0.

A
Y
B

Fig. 2-13 or gate.

OR Sign
A word equation for Fig. 2-13 is

Y = AorB (2-3)

Given the inputs, you can solve for the output. For instance,
ifA =0and B = 0,

Y=00rR0=0

because 0 comes out of an OR gate when both inputs are
0s.
As another example, if A = 0O and B = 1,

Y=00r1=1

because 1 comes out of an OR gate when either input is 1.
Similarly, if A = 1 and B = 0,

Y=10rR0 =1
IfA=1andB =1,
Y=10r1 =1
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In boolean algebra the + sign stands for the OR operation.
In other words, Eq. 2-3 can be written

Y=A+8B (2-4)

" Read this as ‘Y equals A or B.”” Equation 2-4 is the

standard way to write the output of an OR gate.
Given the inputs, you can substitute and solve for the
output. For instance, if A = O and B = 0,

Y=A+B=0+0=0
IfA=0andB =1,
Y=A+B=0+1=1

because 0 orRed with 1 resultsin 1. If A = 1 and B = 0,

Y=A+B=1+0=1
If both inputs are high,
Y=A+B=1+1=1

because 1 ored with 1 gives 1.

Don’t let the new meaning of the + sign bother you.
There’s nothing unusual about symbols having more than
one meaning. For instance, ‘‘pot”” may mean a cooking
utensil, a flower container, the money wagered in a card
game, a derivative of cannabis sativa and so forth; the
intended meaning is clear from the sentence it’s used in.
Similarly, the + sign may stand for ordinary addition or
OR addition; the intended meaning comes across in the way
it’s used. If we’re talking about decimal numbers, + means
ordinary addition, but when the discussion is about logic
circuits, + stands for orR addition.

A }
Y
58—

Fig. 2-14 AND gate.

AND Sign

A word equation for Fig. 2-14 is
Y = AANDB (2-5)

In boolean algebra the multiplication sign stands for the
AND operation. Therefore, Eq. 2-5 can be written

Y=A-B
or simply

Y = AB (2-6)



Read this as “‘Y equals A AND B.”” Equation 2-6 is the
standard way to write the output of an AND gate.
Given the inputs, you can substitute and solve for the
output. For instance, if both inputs are low,
Y=AB=0-0=0
because 0 ANDed with 0 gives 0. If A is low and B is high,
Y=AB=0-1=0

because 0 comes out of an AND gate if any input is 0. If A
is 1 and B is 0,

Y=AB=1-0=0
When both inputs are high,

Y=AB=1-1

il
_

because 1 aNDed with 1 gives 1.

Decision-Making Elements

The inverter, OR gate, and AND gate are often called
decision-making elements because they can recognize some
input words while disregarding others. A gate recognizes a
word when its output is high; it disregards a word when its
output is low. For example, the AND gate disregards all
words with one or more Os; it recognizes only the word
whose bits are all 1s. '

Notation

In later equations we need to distinguish between bits that
are ANDed and bits that are part of a binary word. To do
this we will use italic (slanted) letters (A, B, Y, etc.) for
ANDed bits and roman (upright) letters (A, B, Y, etc.) for
bits that form a word.

For example, Y,Y,Y,Y, stands for the logical product
(ANDIng) of Y3, Y,, ¥y, and ¥, If Y3 = 1,7, = 0, Y, =
0, and Y, = 1, the product Y,Y,Y,Y, will reduce as follows:

Y%K%=Iﬂ-ﬂl=0(gﬂgy"

In this case, the italic letters represent bits that are being
ANDed.

On the other hand, Y;Y,Y,Y, is our notation for a 4-bit
word. With the Y values just given, we can write

Y;Y,Y Y, = 1001
In this equation, we are not dealing with bits that are

ANDed; instead, we are dealing with bits that are part of a
word.

The distinction between italic and roman notation will
become clearer when we get to computer analysis.

Positive and Negative Logic

A final point. Positive logic means that | stands for the
more positive of the two voltage levels. Negative logic
means that 1 stands for the more negative of the two voltage
levels. For instance, if the two voltage levels are 0 and — 5
V, positive logic would have 1 stand for 0 V and 0 for — 5
V, whereas negative logic would have 1 stand for —5 V
and 0 for 0 V.

Ordinarily, people use positive logic with positive supply
voltages and negative logic with negative supply voltages.
Throughout this book, we will be using positive logic.

EXAMPLE 2-7

A .
B Y

(a)

. p—
Y

(b)

Fig. 2-15 Logic circuits.

What is the boolean equation for Fig. 2-15a? The output if
both inputs are high?

SOLUTION

A is inverted before it reache§ the OR gate; therefore, the
upper input to the OR gate is A. The final output is

This is the boolean equation for Fig. 2-154.

To find the output when both inputs are high, either of
two approaches can be used. First, you can substitute
directly into the foregoing equation and solve for ¥

Y=A4+B=1+1=0+1=1

Alternatively, you can analyze the operation of Fig. 2-154
like this. If both inputs are high, the inputs to the OR gate
are 0 and 1. Now, 0 ored with 1 gives 1. Therefore, the
final output is high.

EXAMPLE 2-8

What is the boolean equation for Fig. 2-15b? If both inputs
arc high, what is the output?
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SOLUTION

The AND gate forms the logical product AB, which is
inverted to get

Y = AB

Read this as ‘Y equals NOT AB”’ or ‘Y equals the
complement of AB.”’

If both inputs are high, direct substitution into the equation
gives

y=AB=T1=1=0

Note the order of operations: the ANDing is done first, then
the inversion.

Instead of using the equation, you can analyze Fig.
2-15b as follows. If both inputs are high, the AND gate has
a high output. Therefore, the final output is low.

EXAMPLE 2-9

A —
58—

c—

(a)

>

{b)

Fig. 2-16 Logic circuits.

What is the boolean equation for Fig. 2-16a? The truth
table? Which input words does the circuit recognize?

SOLUTION

The upper AND gate forms the logical product AB, and the
lower AND gate gives CD. ORing these products results in

Y=AB + CD

Read this as ‘Y equals AB OrR CD.”’
Next, look at Fig. 2-16a. The final output is high if the
OR gate has one or more high inputs. This happens when

AB is 1, CD is 1, or both are Is. In turn, AB is 1 when

A =1 and B =1
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TABLE 2-8. TRUTH TABLE
FORY = AB + CD
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CD is 1 when

Both products are 1s when
A=1 B=1 c=1 and D =1

Therefore, the final output is high when A and B are Is,
when C and D are 1s, or when all inputs are 1s.

Table 2-8 summarizes the foregoing analysis. From this
it’s clear that the circuit recognizes these input words: 0011,
0111, 1011, 1100, 1101, 1110, and 1111.

EXAMPLE 2-10

Write the boolean equation for Fig. 2-16b. If all inputs are
high, what is the output?

SOLUTION

The or gate forms the logical sum B + C. This sum is
aNDed with A to get

Y =AB + 0)
(Parentheses indicate ANDing.)
One way to find the output when all inputs are high is

to substitute and solve as follows:

Y=AB +C) =11+ 1) =K =1



Alternatively, you can analyze Fig. 2-16b like this. If all
inputs are high, the or gate has a high output; therefore,
both inputs to the AND gate are high. Since all high inputs
to an AND gate result in a high output, the final output is
high.

EXAMPLE 2-11

4-bit register

o<

<

INY

o<

Y

oo

TYTT T T

&<

=

Fig. 2-17 A 1-of-10 decoder.

What is the boolean equation for each Y output in Fig.
2-17

SOLUTION

Each AND gate forms the logical product of its input signals.

The inputs to the top AND gate are A, B, C and D; therefore,
Yo = ABCD

The inputs to the next AND gate are A, B, C and D; this
means that

Y, = ABCD

Analyzing the remaining gates gives

Y, =ABCD
Y; = ABCD
Y, = ABCD
Ys = ABCD
Yo = ABCD
Y; = ABCD
Ys = ABCD
Yy = ABCD

EXAMPLE 2-12
What does the circuit of Fig. 2-17 do?

SOLUTION

This is a binary-to-decimal decoder, a circuit that converts
from binary to decimal. For instance, when the register
contents are 0011, the Y5 AND gate has all high inputs;
therefore, Y5 is high. Furthermore, register contents of 001 1
mean that all other AND gates have at Ieast one low input.
As aresult, all other AND gates have low outputs. (Analyze
the circuit to convince yourself.)

If the register contents change to 0100, only the Y, AND
gate has all high inputs; therefore, only ¥, is high. If the
register contents change to 0111, Y, is the only high output.

In general, the subscript of the high output equals the
decimal equivalent of the binary number stored in the
register. This is why the circuit is called a binary-to-decimal
decoder.

The circuit of this example is also called a 4-line—to—10-
line decoder because there are 4 input lines and 10 output
lines. Another name for it is a 1-0f-10 decoder because
only 1 of 10 output lines has a high voltage.

GLOSSARY

AND gate A logic circuit whose output is high only when
all inputs are high.

boolean algebra  Originally known as symbolic logic, this
modern algebra uses the set of numbers O and 1. The

Chapter 2 Gates 27



operations OR, AND, and NOT are sometimes called union,
intersection, and inversion. Boolean algebra is ideally suited
to digital circuit analysis.

complement The output of an inverter.

gate A logic circuit with one or more input signals but
only one output signal.

inverter A gate with only 1 input and 1 output. The output
is always the complement of the input. Also known as a
NOT gate.

logic circuit A circuit whose input and output signals are

two-state, either low or high voltages. The basic logic
circuits are OR, AND, and NOT gates.

OR gate A logic circuit with 2 or more inputs and only |
output; 1 or more high inputs produce a high output.
truth table A table that shows all input and output
possibilities for a logic circuit. The input words are listed
in binary progression.

word A string of bits that represent a coded instruction
or data.

SELF-TESTING REVIEW

Read each of the following and provide the missing words.
Answers appear at the beginning of the next question.

1. A gate is a logic circuit with one or more input
signals but only output signal. These
signals are either or high.

2. (one, low) An inverter is a gate with only
input; the output is always in the opposite state from
the input. An inverter is also called a
gate. Sometimes the output is referred to as the
complement of the input.

3. (I, NoT) The OR gate has two or more input signals.
If any input is , the output is high. The
number of input words in a truth table always equals

__, where n is the number of input bits.

4. (high, 27) The gate has two or more

input signals. All inputs must be high to get a high
output.

5. (anD) In boolean algebra, the overbar stands for the

NOT operation, the plus sign stands for the
operation, and the times sign for the
operation.

6. (OR, AND) The inverter, OR gate, and AND gate are

called decision-making elements because they can
recognize some input while disregarding
others. A gate recognizes a word when its output is

7. (words, high) A binary-to-decimal decoder is also

called a 4-line~to—10-line decoder because it has 4
input lines and 10 output lines. Another name for it
is the 1-of-10 decoder because only 1 of its 10 output
lines is high at a time.

PROBLEMS

2-1. How many inputs signals can a gate have? How
many output signals?

2-2. If you cascade seven inverters, does the overall
circuit act like an inverter or noninverter?

2-3. Double inversion occurs when two inverters are
cascaded. Does such a connection act like an
inverter or noninverter?

2-4. The contents of the 6-bit register in Fig. 2-3b
change to 101010. What is the decimal equivalent
of the register contents? The decimal equivalent
out of the hex inverter?

2-5. An OR gate has 6 inputs. How many input words
are in its truth table? What is the only input word
that produces a O output?

2-6. Figure 2-18 shows a hexadecimal encoder, a cir-
cuit that converts hexadecimal to binary. Press-
ing each push-button switch results in a differ-
ent output word Y,Y,Y,Y,. Starting with switch
0, what are the output words? (NOTE: The new
symbol in Fig. 2-18 is another way to draw an OR
gate.
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2-7. In Fig. 2-18 what switches would you press to
produce

0011 1001 1100 1111

(Work from left to right.)
2-8. What is the 4-bit output in Fig. 2-18 when switch
A is pressed? Switch 4? Switch E? Switch 67
2-9. An AND gate has 7 inputs. How many input
words are in its truth table? What is the only
input word that produces a 1 output?

2-10. Visualize the register contents of Fig. 2-19 as the
word A;Aq + Ay, and the final output as the
word Y,Ys -+ - Y. What is the output word for
each of the following conditions:

a. AsA¢- - Ay = 1100 1010, ENABLE
b. AA - - Ay = 0101 1101, ENABLE
c. AAq- - Ay = 11110000, ENABLE
d. AAg- - A, = 1010 1010, ENABLE =

I
O = -0
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Y3 Y2
Fig. 2-18 Hexadecimal encoder.
8-bit register
A, Ag Ay A, Ay A, A Ay
£} Y6 Y5 Ya Y3 £} " Yo
Fig. 2-19
2-11. The 8-bit register of Fig. 2-19 stores 59,0- What
is the decimal equivalent of the final output word
if ENABLE = 07 If ENABLE = 17
2-12. Answer these questions:

a. What input words does a 6-input OR gate
recognize? What word does it disregard?

b.  What input word does an 8-input AND gate
recognize? What words does it disregard?

Y Yo

ENABLE
= >
B 14
c
{b)
Fig. 2-20
2-13. What is the boolean equation for Fig. 2-20a? The
output if both inputs are high?
2-14. If all inputs are high in Fig. 2-20b, what is the

2-15.

output? The boolean equation for the circuit?
What is the only ABC input word the circuit
recognizes?

If you constructed the truth table for Fig. 2-205,
how many input words would it contain?
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Fig. 2-21

Fig. 2-22

)

(b)

Fig. 2-23

A
8

C
D
Fig. 2-24
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instruction register

Fig. 2-25 A 1-of-16 decoder.
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2-16.

2-17.

2-18.

2-19.

2-20.

2-21.

2-22,

What is the boolean equation for Fig. 2-21a? The
output if both inputs are high?
If all inputs are high in Fig. 2-21b, what is the
output? What is the boolean equation of the cir-
cuit? What ABC input words does the circuit
recognize? What is the only word it disregards?
What is the boolean equation for Fig. 2-22a? The
output if all inputs are 1s? If you were to con-
struct the truth table, how many input words
would it have?
Write the boolean equation for Fig. 2-22b. If all
inputs are 1s, what is the output?
If both inputs are high in Fig. 2-23, what is the
output? What is the boolean equation for the cir-
cuit? Describe the truth table.
What is the boolean equation for Fig. 2-24? How
many ABCD input words are in the truth table?
Which input words does the circuit recognize?
Because of the historical connection between bool-
ean algebra and logic, some people use the words
“‘true’” and ‘‘false’’ instead of ‘‘high’’ and
“low’” when discussing logic circuits. For in-
stance, here’s how an AND gate can be described.
If any input is false, the output is false; if all
inputs are true, the output is true.
a. If both inputs are false in Fig. 2-23, what is
the output?
b.  What is the output in Fig. 2-23 if one input is
false and the other true?
¢. InFig. 2-23 what is the output if all inputs are
true?

2-23.

2-24.

2-25.

2-26.

2-27.

Figure 2-25 shows a 1-0f-16 decoder. The signals
coming out of the decoder are labeled LDA,
ADD, SUB, and so on. The word formed by the 4
leftmost register bits is called the OP CODE. As
an equation,

OP CODE = 115114113112

a. If LDA is high, what does OP CODE equal?
. If ADD is high, what does it equal?

¢c.  When OP CODE = 1001, which of the output
signals is high?

d.  Which output signal is high if OP CODE =
111?

In Fig. 2-25, list the OP CODE words and the

corresponding high output signals. (Start with

0000 and proceed in binary to 1111.)

In the following equations the equals sign means

*‘is equivalent to.”” Classify each of the following

as positive or negative logic:

a. 0=0Vandl = +5V,

b. 0= +5Vandl =0V,
c. 0= —=5Vandl =0V.
d 0=0Vandl = -5V,

In Fig. 2-25 four output lines come from the
decoder. Is it possible to add more op codes
without increasing the number of output lines?
How many output lines from the decoder would
be needed to have 256 op codes?
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MORE LOGIC GATES

This chapter introduces NOR and NAND gates, devices that
are widely used in industry. You will also learn about De
Morgan’s theorems; they help you to rearrange and simplify
logic circuits.

3-1 NOR GATES

The NOR gate has two or more input signals but only one
output signal. All inputs must be low to get a high output.
In other words, the NOR gate recognizes only the input
word whose bits are all Os.

A A
Y ' Y
B B

fa) {b)
Fig. 3-1 NoR gate: (a) logical meaning; (b) standard symbol.

Two-Input Gate

Figure 3-la shows the logical structure of a NOR gate,
which is an Or gate followed by an inverter. Therefore,
the final output is NOT the OR of the inputs. Originally
called a NOT-OR gate, the circuit is now referred to as a
NOR gate.

Figure 3-1b is the standard symbol for a NOR gate. Notice
that the inverter triangle has been deleted and the small
circle or bubble moved to the Or-gate output. The bubble
is a reminder of the inversion that follows the ORing.

With Fig. 3-1a and b the following ideas are clear. If
both inputs are low, the final output is high. If one input
is low and the other high, the output is low. And if both
inputs are high, the output is low.

Table 3-1 summarizes the circuit action. As you see, the
NOR gate recognizes only the input word whose bits are all
0s. In other words, all inputs must be low to get a high
output.

32

TABLE 3-1. TWO-
INPUT Nor GATE

A B A+B
0 0 1
0 1 0
1 0 0
1 1 0

Incidentally, the boolean equation for a 2-input NOR gate
is

Y=A+B (3-D

Read this as ‘Y equals NOT A OR B.”” If you use this
equation, remember that the ORing is done first, then the
inversion.

>

fa) b)
Fig. 3-2 Nor gates: (@) 3-input; (b) 4-input.
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Three-Input Gate

Regardless of how many inputs a NOR gate has, it is still
logically equivalent to an OR gate followed by an inverter.
For instance, Fig. 3-2a shows a 3-input NOR gate. The 3
inputs are ored, and the result is inverted. Therefore, the
boolean equation is

Y=A+B+C (3-2)

The analysis of Fig. 3-2a goes like this. If all inputs are
low, the result of oRring is low; therefore, the final output



TABLE 3-2. THREE-INPUT
NOR GATE

A+B+C

—_————, O O OO |
—_— — O O M —0O |

C
0
1
0
1
0
1
0
1

SO OO O OO -

is high. If one or more inputs are high, the result of ORing
is high; so the final output is low.

Table 3-2 summarizes the action of a 3-input NOR gate.
As you see, the circuit recognizes only the input word
whose bits are 0s. In other words, all inputs must be low
to get a high output.

Four-Input Gate

Figure 3-2b is the symbol for a 4-input NOR gate. The
inputs are ORed, and the result is inverted. For this reason,
the boolean equation is

Y=A+B+C+D (3-3)

The corresponding truth table has input words from 0000
to 1111. Word 0000 gives a 1 output; all other words
produce a 0 output. (For practice, you should construct the
truth table of the 4-input NOR gate.)

3-2 DE MORGAN'’S FIRST THEOREM

Most mathematicians ignored boolean algbebra when it first
appeared; some even ridiculed it. But Augustus De Morgan
saw that it offered profound insights. He was the first to
acclaim Boole’s great achievement.

Always a warm and likable man, De Morgan himself
had paved the way for boolean algebra by discovering two
important theorems. This section introduces the first theo-
rem.

The First Theorem

Figure 3-3a is a 2-input NOR gate, analyzed earlier. As you
recall, the boolean equation is

Y=A+B

and Table 3-3 is the truth table.

(b)
Fig. 3-3 De Morgan’s first theorem: (q) NOR gate; (b) AND gate
with inverted inputs.

Figure 3-3b has the inputs inverted before they reach the
AND gate. Therefore, the boolean equation is

Y = AB

If both inputs are low in Fig. 3-3b, the AND gate has high
inputs; therefore, the final output is high. If one or more
inputs are high, one or more AND-gate inputs must be low
and the final output is low. Table 3-4 summarizes thesc
ideas.

TABLE 3-3 TABLE 3-4
A B| A+B A B| AB
0 0 1 0 0| 1
0 1 0 0 1| 0
1 0 0 1 0] o
11 0 1] 0

Compare Tables 3-3 and 3-4. They’re identical. This
means that the two circuits are logically equivalent; given
the same inputs, the outputs are the same. In other words,
the circuits of Fig. 3-3 are interchangeable.

De Morgan discovered the foregoing equivalence long
before logic circuits were invented. His first theorem says

A+ B=AB (3-4)

The left member of this equation represents Fig. 3-3a; the
right member, Fig. 3-3b. Equation 3-4 says that Fig. 3-3a
and b are equivalent (interchangeable).

Bubbled AND Gate

Figure 3-4a shows an AND gate with inverted inputs. This
circuit is so widely used that the abbreviated logic symbol
of Fig. 3-4b has been adopted. Notice that the inverter
triangles have been deleted and the bubbles moved to the
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Fig. 3-4 anD gate with inverted inputs: (a) circuit; (b) abbreviated
symbol.

AND-gate inputs. From now on, we will refer to Fig.
3-4p as a bubbled AND gate; the bubbles are a reminder of
the inversion that takes place before ANDing.

- -

Fig. 3-5 De Morgan’s first theorem.

Figure 3-5 is a graphic summary of De Morgan’s first
theorem. A NOR gate and a bubbled AND gate are equivalent.
As shown later, because the circuits are interchangeable,
you can often reduce complicated logic circuits to simpler
forms.

More than Two Inputs

When 3 inputs are involved, De Morgan’s first theorem is
written

A+ B+ C=ABC (3-5)
For 4 inputs

A+B+C+D=ABCD (3-6)

In both cases, the theorem says that the complement of a
sum equals the product of the complements.

SRE B!
SR

LLL

|-

Fig. 3-6 De Morgan’s first theorem: (a) 3-input circuits; (b) 4-
input circuits.

HML
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Here’s what really counts. Equation 3-5 says that a 3-
input NOR gate and a 3-input bubbled AND gate arc equivalent
(see Fig. 3-6a). Equation 3-6 means that a 4-input NOR
gate and a 4-input bubbled AND gate are equivalent (Fig.
3-6b). Memorize these equivalent circuits; they are a visual
statement of De Morgan’s first theorem.

Notice in Fig. 3-6b how the input edges of the NOR gate
and the bubbled AND gate have been extended. This is
common drafting practice when there are many input signals.
The same idea applies to any type of gate.

EXAMPLE 3-1

Prove that Fig. 3-7a and ¢ are equivalent.

(b}

fe)
Fig. 3-7 Equivalent De Morgan circuits.

SOLUTION

The final NOR gate in Fig. 3-7a is equivalent to a bubbled
AND gate. This allows us to redraw the circuit as shown in
Fig. 3-7b.

Double inversion produces noninversion; therefore, each
double inversion in Fig. 3-7b cancels out, leaving the
simplified circuit of Fig. 3-7c. Figure 3-7a and ¢ are
therefore equivalent.

Remember the idea. Given a logic circuit, you can replace
any NOR’ gate by a bubbled AND gate. Then any double
inversion (a pair of bubbles in a series path) cancels out.
Sometimes you wind up with a simpler logic circuit than
you started with; sometimes not.

But the point remains. De Morgan’s first theorem enables
you to rearrange a logic circuit with the hope of finding a
simpler equivalent circuit or perhaps getting more insight
into how the original circuit works.

3-3 NAND GATES

The NAND gate has two or more input signals but only one
output signal. All input signals must be high to get a low
output.
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fa) {b)
Fig. 3-8 NaND gate: (a) logical meaning; (b) standard symbol.

Two-Input Gate

Figure 3-8a shows the logical structure of a NAND gate, an
AND gate followed by an inverter. Therefore, the final
output is NOT the AND of the inputs. Originally called a
NOT-AND gate, the circuit is now referred to as a NAND
gate.

Figure 3-8b is the standard symbol for a NAND gate. The
inverter triangle has been deleted and the bubble moved to
the AND-gate output. If one or more inputs are low, the
result of ANDing is low; therefore, the final inverted output
is high. Only when all inputs are high does the ANDing
produce a high signal; then the final output is low.

Table 3-5 summarizes the action of a 2-input NAND gate.
As shown, the NAND gate recognizes any input word with
one or more Os. That is, one or more low inputs produce
a high output. The boolean equation for a 2-input NAND
gate is

Y = AB (3-7)

Read this as “‘Y equals NOT AB.”’ If you use this equation,
remember that the ANDing is done first then the inversion.

EDCNE DS

fa) b}
Fig. 3-9 NaND gates: (@) 3-input; (b) 4-input.

Three-Input Gate

Regardless of how many inputs a NAND gate has, it’s still
logically equivalent to an AND gate followed by an inverter.
For example, Fig. 3-9a shows a 3-input NAND gate. The
inputs are ANDed, and the product is inverted. Therefore,
the boolean equation is

Y = ABC (3-8)

Here is the analysis of Fig. 3-9a. If one or more inputs
are low, the result of aANDing is low; therefore, the final
output is high. If all inputs are high, the ANDing gives a
high signal; so the final output is low.

Table 3-6 is the truth table for a 3-input NAND gate. As
indicated, the circuit recognizes words with one or more
Os. This means that one or more low inputs produce a high
output.

TABLE 3-5. TABLE 3-6. THREE-
TWO-INPUT INPUT ~nanD GATE
NAND GATE

A B C| ABC
A B | AB

0 0 0 1
0 0 1 0 0 1 1
0 1 1 0O 1 0 1
1 0 1 0 1 1 1
1 1 0 1 0 0 1

1 0 1 1

i 1 0 1

1 1 1 0

Four-Input Gate

Figure 3-9b is the symbol for a 4-input NAND gate. The
inputs are ANDed, and the result is inverted. Therefore, the
boolean equation is

Y = ABCD (3-9)

If you construct the truth table, you will have input words
from 0000 to 1111. All words from 0000 through 1110
produce a 1 output; only the word 1111 gives a 0 output.

3-4 DE MORGAN'S SECOND
THEOREM

The proof of De Morgan’s second theorem is similar to the
proof given for the first theorem. What follows is a brief
explanation.

The Second Theorem

When two inputs are used, De Morgan’s second theorem
says that
AB=A+B

z

(3-10)

In words, the complement of a product equals the sum of
the complements. The left member of this equation repre-
sents a NAND gate (Fig. 3-10a); the right member stands

A —1]
Y Y
iD=
fa) (b)

3
y
B

fc)
Fig. 3-10 De Morgan’s second theorem: (@) NAND gate; (b) OR
gate with inverted inputs; (c) bubbled or gate.
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for an OR gate with inverted inputs (Fig. 3-10b). Therefore,
De Morgan’s second theorem boils down to the fact that

Fig. 3-10a and b are equivalent.

)

Fig. 3-11 De Morgan’s second theorem.

Bubbled OR Gate

The circuit of Fig. 3-10b is so widely used that the
abbreviated logic symbol of Fig. 3-10c has been adopted.
From now on we will refer to Fig. 3-10c as a bubbled OR
gate; the bubbles are a reminder of the inversion that takes
place before ORing. -

Figure 3-11 is a visual statement of De Morgan’s second
theorem: a NAND gate and a bubbled OR gate are equivalent.
This equivalence allows you to replace one circuit by the
other whenever desired. This may lead to a simpler logic
circuit or give you more insight into how the original circuit
works. ’

More than Two Inputs

When 3 inputs are involved, De Morgan’s second theorem
is written

C=A+B+C (3-11)
If 4 inputs are used,
ABCD=A+B+C+D (3-12)

These equations say that the complement of a product
equals the sum of the complements.

b

Fig. 3-12 De Morgan’s second theorem: (a) 3-input circuits; (b)
4-input circuits.

1]

Figure 3-12 is a visual summary of the second theorem.
Whether 3 or 4 inputs are involved, a NAND gate and a
bubbled OR gate are equivalent (interchangeable).
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EXAMPLE 3-2

Prove that Fig. 3-13a and ¢ are equivalent.

[ Q
[[1]

L1

fa) (b}

M

(5

Fig. 3-13 Equivalent circuits.

(c)

SOLUTION

Replace the final NAND gate in Fig. 3-13a by a bubbled oRrR
gate. This gives Fig. 3-13b. The double inversions cancel
out, leaving the simplified circuit of Fig. 3-13c. Figure
3-13a and c are therefore equivalent. Driven by the same
inputs, either circuit produces the same output as the other.
So if you’re loaded with NAND gates, build Fig. 3-13a. If
your shelves are full of AND and OR gates, build Fig.
3-13c.

Incidentally, most people find Fig. 3-13b easier to analyze
than Fig. 3-134. For this reason, if you build Fig. 3-13a,
draw the circuit like Fig. 3-13b. Anyone who sees Fig.
3-13b on a schematic diagram knows that the bubbled ORrR
gate is the same as a NAND gate and that the built-up circuit
is two NAND gates working into a NAND gate.

EXAMPLE 3-3

Figure 3-14 shows a circuit called a control matrix. At first,
it looks complicated, but on closer inspection it is relatively
simple because of the repetition of NAND gates. De Morgan’s
theorem tells us that NAND gates driving NAND gates are
equivalent to AND gates driving OR gates.

The upper set of inputs T, to T are called timing signals;
only one of them is high at a time. T goes high first, then
T,, then T5, and so on. These signals control the rate and
sequence of computer operations.

The lower set of inputs LDA, ADD, SUB, and OUT are
computer instructions; only one of them is high at a time.
The outputs Cp, Ep, Ly, ..., to Ly control different
registers in the computer.

Answer the following questions about the control matrix:

a. Which outputs are high when 7, is high?
b. If T, and LDA are high, which outputs are high?
c¢. When Ty and SUB are high, which outputs are high?



W T, T3 T, Tg Tg

LDA

ADD

SUB
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Co Ep Ly Eg

Fig. 3-14 Control matrix.

SOLUTION

a. Visualize T, high. You can quickly check out each
gate and realize that E» and L, are the only high
outputs.

b. This time T, and LDA are high. Check each gate and
you can see that L, and E; are the only high outputs.

¢. When T and SUB are high, the high outputs are L,,
Sy, and E,.

3-5 EXCLUSIVE-OR GATES

An OR gate recognizes words with one or more 1s. The
EXCLUSIVE-OR gate is different; it recognizes only words
that have an odd number of 1s.

Two Inputs

Figure 3-15a shows one way to build an EXCLUSIVE-OR
gate, abbreviated XOR. The upper AND gate forms the
product AB, and the lower AND gate gives AB. Therefore,
the boolean equation is

Y = AB + AB (3-13)

SU Ey Lg Ly

fb)
Fig. 3-15 (a) EXCLUSIVE-OR gate. (b) A 2-input EXCLUSIVE-OR
gate.

Here’s what the circuit does. In Fig. 3-15a two low
inputs mean both AND gates have low outputs; so the final
output is low. If A is low and B is high, the upper AND
gate has a high output; therefore, the final output is high.
Likewise, a high A and low B result in a final output that
is high. If both inputs are high, both AND gates have low
outputs and the final output is low.

Table 3-7 shows the truth table for a 2-input EXCLUSIVE-
OR gate. The output is high when A or B is high but not
both; this is why the circuit is known as an EXCLUSIVE-OR
gate. In other words, the output is a 1 only when the inputs
are different.
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TABLE 3-7. TWO-

INPUT xor GATE
A B| AB + AB
0 0 0
0 1 1
1 0 1
11 0

Logic Symbol and Boolean Sign

Figure 3-15b is the standard symbol for a 2-input XOR gate.
Whenever you see this symbol, remember the action: the
inputs must be different to get a high output.
A word equation for Fig. 3-15b is

Y = AXOR B (3-14)
In boolean algebra the sign @ stands for XOR addition.
This means that Eq. 3-14 can be written

Y=A®B (3-15)
Read this as “‘Y equals A XOR B.”’

Given the inputs, you can substitute and solve for the
output. For instance, if both inputs are low,

Y=090=0

because 0 xored with 0 gives 0. If one input is low and
the other high,

Y=0®1-=1

because 0 xored with 1 produces 1. And so on.
Here’s a summary of the four possible xOR additions:

0P0=0
0P1 =1
1@0 =1
1®1=0

Remember these four results; we will be using XOR addition
when we get to arithmetic circuits.

Four Inputs

In Fig. 3-16a the upper gate produces A @ B, while the
lower gate gives C @ D. The final gate XORs both of these
sums to get

Y=A4®B ®CDD) (3-16)
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O » >

(b)

Fig. 3-16 A 4-input EXCLUSIVE-OR gate: (a) circuit with 2-input
XOR gates; (b) logic symbol.

It’s possible to substitute input values into the equation and
solve for the output. For instance, if A through C are low
and D is high,

Y=00000®D
=0®1
=1

One way to get the truth table is to plow through all the
input possibilities.

Alternatively, you can analyze Fig. 3-16a as follows. If
all inputs are Os, the first two gates have 0 outputs; so the
final gate has a O output. If A to C are Os and D is a 1, the
upper gate has a 0 output, the lower gate has a 1 output,
and the final gate has a 1 output. In this way, you can
analyze the circuit action for all input words.

Table 3-8 summarizes the action. Here is an important
property: each input word with an odd number of 1s
produces a 1 output. For instance, the first input word to
produce a 1 output is 0001; this word has an odd number
of 1s. The next word with a 1 output is 0010; again an odd
number of 1s. A 1 output also occurs for these words:
0100, 0111, 1000, 1011, 1101, and 1110, all of which
have an odd number of 1s.

The circuit of Fig. 3-16a recognizes words with an odd
number of 1s; it disregards words with an even number of
1s. Figure 3-16a is a 4-input XOR gate. In this book, we
will use the abbreviated symbol of Fig. 3-16b to represent
a 4-input XoRr gate. When you see this symbol, remember
the action: the circuit recognizes words with an odd number
of 1s.

Any Number of Inputs

Using 2-input XOR gates as building blocks, we can make
XOR gates with any number of inputs. For example, Fig.



TABLE 3-8. FOUR-INPUT
XOR GATE

Comment

Even
Odd
0Odd
Even
0Odd
Even
Even
Odd
Odd
Even
Even
Odd
Even
Odd
0Odd
Even

e e - N o el el e = Y
—w—a»—»—‘oooo;~—»--oooo I~
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Fig. 3-17 xor gates: (a) 3-input; () 6-input.

3-17a shows the abbreviated symbol for a 3-input xoR gate,
and Fig. 3-17b is the symbol for a 6-input xOR gate. The
final output of any XOR gate is the XOR sum of the inputs:

Y=A@B®C-:- (3-17)
What you have to remember for practical work is this:

an XOR gate, no matter how many inputs, recognizes only
words with an odd number of 1s.

Parity

Even parity means a word has an even number of 1s. For
instance, 110011 has even parity because it contains four
1s. Odd parity means a word has an odd number of 1s. As
an example, 110001 has odd parity because it contains
three 1s.

Here are two more examples:

11110000 1111 0011
1111 000011110111

(Even parity)
(Odd parity)

The first word has even parity because it contains ten Is;
the second word has odd parity because it contains eleven
Is.

XOR gates are ideal for testing the parity of a word. XOR
gates recognize words with an odd number of 1s. Therefore,
even-parity words produce a low output and odd-parity
words produce a high output.

EXAMPLE 3-4

What is the output of Fig. 3-18 for each of these input
words?

a. 1010 1100 1000 1100

b. 1010 1100 1000 1101

16 bits

0oDD
Fig. 3-18 Odd-parity tester.

SOLUTION

a. The word has seven Is, an odd number. Therefore,
the output signal is

ODD =1
b. The word has eight 1s, an even number. Now

ODD = 0
This is an example of an odd-parity tester. An even-
parity word produces a low output. An odd-parity word
results in a high output.

EXAMPLE 3-5

The 7-bit register of Fig. 3-19 stores the letter A in ASCIL
form. What does the 8-bit output word equal?
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7-bit register
AS A5 A4 A3 A2 A1 AO
~ s a
h
Odd-parity b v -
bit Instruction or data bits
N )

8-bit word w'ith odd parity
Fig. 3-19 Odd-parity generator.

SOLUTION

The ASCII code for letter A is
100 0001

(see Table 1-6 for the ASCII code). This word has an even
parity, which means that the XOR gate has a 0 output.
Because of the inverter, the overall output of the circuit is
the 8-bit word

1100 0001

Notice that this has odd parity.

The circuit is called an odd-parity generator because it
produces an 8-bit output word with odd parity. If the register
word has even parity, 0 comes out of the XOR gate and the
odd-parity bit is 1. On the other hand, if the register word
has odd parity, a 1 comes out of the XOR gate and the odd-
parity bit is 0. No matter what the register contents, the
odd-parity bit and the register bits form a new 8-bit word
that has odd parity.

What is the practical application? Because of transients,
noise, and other disturbances, 1-bit errors sometimes occur
in transmitted data. For instance, the letter A may be
transmitted over phone lines in ASCII form:

100 0001 (A)

Somewhere along the line, one of the bits may be changed.
If the X, bit changes, the received data will be

100 0011 (&)
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Because of the 1-bit error, we receive letter C when letter
A was actually sent.

One solution is to transmit an odd-parity bit along with
the data word and have an XOR gate test each received
word for odd parity. For instance, with a circuit like Fig.
3-19 the letter A would be transmitted as

1100 0001

An XOR gate will test this word when it is received. If no
error has occurred, the XOR gate will recognize the word.
On the other hand, if a 1-bit error has crept in, the XOR
gate will disregard the received word and the data can be
rejected.

A final point. When errors come, they are usually 1-bit
errors. This is why the method described catches most of
the errors in transmitted data.

EXAMPLE 3-6
What does the circuit of Fig. 3-20 do?

A
INVERT
Y
Fig. 3-20
SOLUTION
When INVERT = Qand A = 0,
Y=030=0
When INVERT = Oand A = 1,
Y=091=1

In either case, the output is the same as A; that is,
Y=A

for a low INVERT signal.
On the other hand, when INVERT = 1l and A = 0,

Y=1@0=1

When INVERT = l1and A = 1,

Il
o

Y=1@1



This time, the output is the complement of A. As an
equation,

Y=A

for a high INVERT signal.

To summarize, the circuit of Fig. 3-20 does either of
two things. It transmits A when INVERT is 0 and A when
INVERT is 1.

3-6 THE CONTROLLED INVERTER

The preceding example suggests the idea of a controlled
inverter, a circuit that transmits a binary word or its /s
complement.

The 1'’s Complement

Complement each bit in a word and the new word you get
is the 1’s complement. For instance, given

1100 0111
the 1’s complement is
0011 1000

Each bit in the original word is inverted to get the 1's
complement.

The Circuit

The xor gates of Fig. 3-21 form a controlled inverter
(sometimes called a programmed inverter). This circuit can
transmit the register contents or the 1’s complement of the

register contents. As demonstrated in Example 3-6, each
XOR gate acts like this. A low INVERT results in

and a high INVERT gives
; Yn = Xn "//

So each bit is either transmitted or inverted before reaching
the final output.

Visualize the register contents as a word A,Aq * « + A,
and the final output as a word Y;Y - - - Y,. Then a low
INVERT means

Y Yo - Yo = AjJAq - - - A,
On the other hand, a high INVERT results in
Y Yo Yo = AAg- - A,
As a concrete example, suppose the register word is
AAg - - Ay = 11100110
Then, a low INVERT gives an output word of
Y, Ys - Yo = 11100110
and a high INVERT produces
Y.Ys - - - Y, = 0001 1001
The controlled inverter of Fig. 3-21 is important. Later
you will see how it is used in solving arithmetic and logic

problems. For now, all you need to remember is the key
idea. The output word from a controlled inverter equals the

8-hit register

P & @

Fig. 3-21 Controlled inverter.

INVERT
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input word when INVERT is low; the output word equals
the 1’s complement when INVERT is high.

Boldface Notation

After you understand an idea, it simplifies discussions and
equations if you use a symbol, letter, or other sign to
represent the idea. From now on, boldface letters will stand
for binary words.

For instance, instead of writing

A7A6 M AO = 1110 0110
we can write

A = 11100110

Likewise, instead of
Y,Ys - Y, = 0001 1001
the simpler equation
Y = 0001 1001

can be used.

This is another example of chunking. We are replacing
long strings like A;Aq * + « Agand Y;Ys - - - Y, by A and
Y. This chunked notation will be convenient when we get
to computer analysis.

This is how to summarize the action of a controlled

inverter:
A
Y= {K

(Note: A boldface letter with an overbar means that each
bit in the word is complemented; if A is a word, A is its
I’s complement.)

when INVERT = 0
when INVERT = 1

3-7 EXCLUSIVE-NOR GATES

The EXCLUSIVE-NOR gate, abbreviated XNOR, is logically
equivalent to an XOR gate followed by an inverter. For
example, Fig. 3-22a shows a 2-input XNOR gate. Figure
3-22b is an abbreviated way to draw the same circuit.

A A
Y Y
B B8

fa) {b)
Fig. 3-22 A 2-input XNOR gate: (a) circuit; (b) abbreviated symbol.
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TABLE 3-9.
TWO-INPUT
XNOR GATE

h<

—_——_— 0 O oS
— oo |

—_—0 O =

Because of the inversion on the output side, the truth
table of an XNOR gate is the complement of an XOR truth
table. As shown in Table 3-9, the output is high when the
inputs are the same. For this reason, the 2-input XNOR gate
is ideally suited for bit comparison, recognizing when two
input bits are identical. (Example 3-7 tells you more about
bit comparison.)

o P

fa) (b
Fig. 3-23 xn~or gates: (a) 3-input; (b) 4-input.

Figure 3-23a is the symbol for a 3-input XNOR gate, and
Fig. 3-23b is the 4-input XNOR gate. Because of the inversion
on the output side, these XNOR gates perform the comple-
mentary function of XOR gates. Instead of recognizing odd-
parity words, XNOR gates recognize even-parity words.

EXAMPLE 3-7
What does the circuit of Fig. 3-24 do?

SOLUTION

The circuit is a word comparator; it recognizes two identical
words. Here is how it works. The leftmost XNOR gate
compares As and Bs; if they are the same, Y5 is a 1. The
second XNOR gate compares A, and B,; if they are the same,
Y, is a 1. In turn, the remaining XNOR gates compare the
bits that are left, producing a 1 output for equal bits and a
0 output for unequal bits.

If the words A and B are identical, all XNOR gates have
high outputs and the AND gate has a high EQUAL. If words
A and B differ in one or more bit positions, the AND gate
has a low EQUAL.




A register B register
, ! - * f { o PR
' ! . [ A
A5 A4 A3 A2 A1 AO 35 BA 83 82 B1 BO
EQUAL
Fig. 3-24 Word comparator.
GLOSSARY

controlled inverter This circuit produces the 1’s comple-
ment of the input word. One application is binary subtrac-
tion. It is sometimes called a programmed inverter.

De Morgan’s theorems The first theorem says that a NOR
gate is equivalent to a bubbled AND gate. The second
theorem says that a NAND gate is equivalent to a bubbled
OR gate.

even parity An even number of 1s in a binary word.
NAND gate Equivalent to an AND gate followed by an
inverter. All inputs must be high to get a low output.
NOR gate Equivalent to an OR gate followed by an inverter.
All inputs must be low to get a high output.

odd parity An odd number of 1s in a binary word.
parity generator A circuit that produces either an odd- or
even-parity bit to go along with the data.

XNOR gate Equivalent to an EXCLUSIVE-OR gate followed
by an inverter. The output is high only when the input word
has even parity.

XOR gate An EXCLUSIVE-OR gate. It has a high output
only when the input word has odd parity. For a 2-input
XOR gate, the output is high only when the inputs are
different.

SELF-TESTING REVIEW

Read each of the following and provide the missing words.
Answers appear at the beginning of the next question.

1. A NOR gate has two or more input signals. All inputs
must be to get a high output. A NOR
gate recognizes only the input word whose bits are

. The NOR gate is logically equivalent to
an OR gate followedbyan |

2. (low, Os, inverter) De Morgan’s first theorem says
that a NOR gate is equivalent to a bubbled
gate.

3. (AND) A NAND gate is equivalent to an AND gate
followed by an inverter. All inputs must be

to get a low output. De Morgan’s second theorem
says that a NAND gate is equivalent to a bubbled
gate.

4. (high, OR) An XOR gate recognizes only words with
an______ number of 1s. The 2-input XOR gate
has a high output only when the input bits are

. XOR gates are ideal for testing parity
because even-parity words produce a
output and odd-parity words produce a
output.

5. (odd, different, low, high) An odd-parity generator
produces an odd-parity bit to go along with the data.
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The parity of the transmitted datais . An
XOR gate can test each received word for parity,
rejecting words with parity.

6. (odd, even) A controlled inverter is a logic circuit
that transmits a binary word orits — com-
plement.

7. (I’s) The EXCLUSIVE-NOR gate is equivalent to an
XOR gate followed by an inverter. Because of this,
even-parity words produce a high output.

PROBLEMS

3-1. In Fig. 3-254 the two inputs are connected to-
gether. If A is low, what is ¥Y? If A is high, what
is Y? Does the circuit act like a noninverter or an
inverter?

Fig. 3-25

3-2. What is the output in Fig. 3-255 if both inputs are
low? If one is low and the other high? If both are
high? Does the circuit act like an OR gate or an
AND gate?

3-3. Figure 3-26 shows a NOR-gate crosshar switch. If
all X and Y inputs are high, which of the Z
outputs is high? If all inputs are high except X,
and Y,, which Z output is high? If X, and Y, are
low and all other inputs are high, which Z output
is high?

3-4. In Fig. 3-26, you want Z; to be 1 and all other Z
outputs to be 0. What values must the X and Y
inputs have?

3-5. The outputs in Fig. 3-27 are cross-coupled back
to the inputs of the NOR gates. If R = 0 and §
1, what do Q and Q equal?

. R .
o

o]

{

.S

Fig. 3-27 Cross-coupled NOR gates.

36. IfR = 1andS = 0in Fig. 3-27, what does Q
equal? Q7

3-7. Prove that Fig. 3-28a and b are equivalent.

3-8. What is the output in Fig. 3-28a if all inputs are
0Os. If all inputs are 1s?

3-9. What is the output in Fig. 3-285 if all inputs are
0Os. If all inputs are 1s?

3-10. A NOR has 6 inputs. How many input words are
in its truth table? What is the only input word that
produces a 1 output?

3-11. In Fig. 3-28a how many input words are there in
the truth table?

3-12. What is the output in Fig. 3-29 if all inputs are
low? If all inputs are high?

. Xo » -
X »> »*

Fig. 3-26 Nor-gate crossbar switch.
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Fig. 3-28

A
B
BE
C
[2]
Fig. 3-29

3-13. How many words are in the truth table of Fig.
3-29. What is the value of Y for each of the
following?

a. ABCD = 0011
b. ABCD = 0110
c. ABCD = 1001
d. ABCD = 1100

3-14. Which ABCD input words does the circuits of

Fig. 3-29 recognize?

3-15. In Fig. 3-30a the two inputs are connected to-
gether. If A = 0 what does Y equal? If A = 1,
what does Y equal? Does the circuit act like a
noninverter or an inverter?

] v

T+

fb)

Fig. 3-30

3-16. What is the output in Fig. 3-30b if both inputs are
low? If one input is low and the other high? If
both are high? Does the circuit act like an OR gate
or an AND gate?

—==—3-17. Suppose the NOR gates of Fig. 3-26 are replaced
by NAND gates. Then you've got a NAND-gate
crossbar switch.

a. If all X and Y inputs are low, which Z output
is low?

e o
D=0

—

(b}

2
pN

Q
\

b. If all inputs are low except X, and Y,, which
Z output is low?

c. If all inputs are low except X, and Y,, which
Z output is low?

d. To get a low Z; output, which inputs must be

high?
3-18. In Fig. 3-31, what are the outputs if R = 0 and
S=1

Fig. 3-31 Cross-coupled NAND gates.

3-19. IfR = 1and S = 0 in Fig. 3-31, what does Q
equal? Q?

3-20. What is the output in Fig. 3-32q if all inputs are
0s? If all inputs are 1s?

3-21. How many input words are there in the truth table
of Fig. 3-32a? W S P :

i

o}

S

fa)
(b)

| |

1 1L

U HE 1

Fig. 3-32
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3-22. Prove that Fig. 3-32a and b are equivalent. c. All inputs are low except T,, JAZ, and A;.
3-23. What is the output in Fig. 3-33 if all inputs are d. The only high inputs are T,, JAM, and A.
low? If they are all high? 3-26. Figure 3-35 shows the control matrix discussed in
3-24. How many words are in the truth table of Fig. Example 3-3. Only one of the timing signals T, to
3-33? What does Y equal for each of the follow- T, is high at a time. Also, only one of the instruc-
ing: tions, LDA to OUT, is high at a time. Which are
a. ABCDE = 00111 the high outputs for each of the following condi-
b. ABCDE = 10110 tions?
c. ABCDE = 11010 a. T, high g. Tsand ADD high
d. ABCDE = 10101 b. T, high h. T¢and ADD high
3-25. In Fig. 3-34 the inputs are T,, JMP, JAM, JAZ, c. T, high i. T,and SUB high
A,y and Ay; the output is L,. What is the output d. T, and LDA high j. Ts and SUB high
for each of these input conditions? e. Tsand LDA high k. Tsand SUB high
a. All inputs are Os. f. T, and ADD high 1. T, and OUT high
b. All inputs are low except T, and JMP.
T JMP  UAM  JAZ 4, Ay
b LF
Fig. 3-33 Fig. 3-34
W Ty I3 Ta 75 T
LDA :
ADD-
SuB
our » -
— | ]
Cr Lo Ly Ep Ly E Ly Ega SU Ey Lg Lo

Fig. 3-35 Control matrix.
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3-27.

Figure 3-36 shows a binary—to—-Gray-code con-
verter. (Gray code is a special code used in ana-
log-to-digital conversions.) The input word is
X4X;5 - -+ Xo, and the output word is Y,Y; - - -
Y,. What does the output word equal for each of
these inputs?

a. XX, - X, = 10011
b. XX, X, = 01110
c. XX, X, = 10101
d. XX, X, = 11100

Fig. 3-36 Binary—to-Gray-code converter.

3-28.

3-29.

3-30.

3-31.

How many input words are there in the truth table
of an 8-input xOR gate?

How can you modify Fig. 3-19 so that it produces
an 8-bit output word with even parity?

In the controlled inverter of Fig. 3-21, what is the
output word Y for each of these conditions?

a. A = 1100 1111 and INVERT = 0

b. A = 0101 0001 and INVERT = 1
¢. A = 1110 1000 and INVERT = 1
d. A = 10100101 and INVERT = 0

The inputs A and B of Fig. 3-37 produce outputs
of CARRY and SUM. What are the values of
CARRY and SUM for each of these inputs?

a. A=0andB =0
b. A=0andB =1
c. A=1landB =0
d. A=1landB =1

/
CARRY {

Sum

Fig. 3-37

3-32.

3-33.

3-34.

3-35.

In Fig. 3-37, what is the boolean equation for
CARRY? For SUM?

What is the 1’s complement for each of these
numbers?

a. 1100 0011

b. 1010 1111 0011

¢. 1110 0001 1010 0011

d. 0000 1111 0010 1101

What is the output of a 16-input XNOR gate for
each of these input words?

a. 0000 0000 0000 1111

b. 11110101 1110 1100

¢. 0101 1100 0001 0011

d. 1111 0000 1010 0110

The boolean equation for a certain logic circuit is
Y = AB + CD + AC. What does Y equal for
each of the following:

a. ABCD = 0000

b. ABCD = 0101
¢. ABCD = 1010
d. ABCD = 1001
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TTL CIRCUITS

In 1964 Texas Instruments introduced transistor-transistor
logic (TTL), a widely used family of digital devices. TTL
is fast, inexpensive, and easy to use. This chapter concen-
trates on TTL because once you are familiar with it, you
can branch out to other logic families and technologies.

4-1 DIGITAL INTEGRATED
CIRCUITS

Using advanced photographic techniques, a manufacturer
can produce miniature circuits on the surface of a chip (a
small piece of semiconductor material). The finished net-
work is so small you need a microscope to see the
connections. Such a circuit is called an integrated circuit
(IC) because the components (transistors, diodes, resistors)
are an integral part of the chip. This is different from a
discrete circuit, in which the components are individually
connected during assembly.

Levels of Integration

Small-scale integration (SSI) refers to ICs with fewer than
12 gates on the same chip. Medium-scale integration (MSI)
means from 12 to 100 gates per chip. And large-scale
integration (LSI) refers to more than 100 gates per chip.
The typical microcomputer has its microprocessor, memory,
and I/O circuits on LSI chips; a number of SSI and MSI
chips are used to support the LSI chips.

Technologies and Families

The two basic technologies for manufacturing digital ICs
are bipolar and MOS. The first fabricates bipolar transistors
on a chip; the second, MOSFETS. Bipolar technology is
preferred for SSI and MSI because it is faster. MOS
technology dominates the LSI field because more MOSFETs
can be packed on the same chip area.

A digital family is a group of compatible devices with
the same logic levels and supply voltages (‘‘compatible’’
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means that you can connect the output of one device to the
input of another). Compatibility permits a large number of
different combinations.

Bipolar Families
In the bipolar category are these basic families:

DTL Diode-transistor logic
TTL Transistor-transistor logic
ECL Emitter-coupled logic

DTL uses diodes and transistors; this design, once popular,
is now obsolete. TTL uses transistors almost exclusively;
it has become the most popular family of SSI and MSI
chips. ECL, the fastest logic family, is used in high-speed
applications.

MOS Families

In the MOS category are these families:

PMOS p-Channel MOSFETs
NMOS n-Channel MOSFETs
CMOS Complementary MOSFETs

PMOS, the oldest and slowest type, is becoming obsolete.
NMOS dominates the LSI field, being used for micropro-
cessors and memories. CMOS, a push-pull arrangement of
n- and p-channel MOSFETS, is extensively used where low
power consumption is needed, as in pocket calculators,
digital wristwatches, etc.

4-2 7400 DEVICES

The 7400 series, a line of TTL circuits introduced by Texas
Instruments in 1964, has become the most widely used of
all bipolar ICs. This TTL family contains a variety of SSI
and MSI chips that allow you to build all kinds of digital
circuits and systems.



Fig. 4-1 Standard TTL NanD gate,

Standard TTL

Figure 4-1 shows a TTL NAND gate. The multiple-emitter
input transistor is typical of all the gates and circuits in the
7400 series. Each emitter acts like a diode; therefore, Q,
and the 4-k{} resistor act like a 2-input AND gate. The rest
of the circuit inverts the signal; therefore, the overall circuit
acts like a 2-input NAND gate.

The output transistors (Q; and Q,) form a totem-pole
connection, typical of most TTL devices. Either one or the
other is on. When Q; is on, the output is high; when Q, is
on, the output is low. The advantage of a totem-pole
connection is its low output impedance.

Ideally, the input voltages A and B are either low
(grounded) or high (5 V). If A or B is low, Q, saturates.
This reduces the base voltage of Q, to almost zero.
Therefore, Q, cuts off, forcing Q, to cut off. Under these
conditions, Q; acts like an emitter follower and couples a
high voltage to the output.

On the other hand, when both A and B are high, the
collector diode of Q, goes into forward conduction; this
forces Q, and Q, into saturation, producing a low output.
Table 4-1 summarizes all input and output conditions.

Incidentally, without diode D, in the circuit, Q; would
conduct slightly when the output is low. To prevent this,
the diode is inserted; its voltage drop keeps the base-emitter

TABLE 4-1.
TWO-
INPUT
NAND GATE

A B|Y

0 0|1

0 1|1

1 0|1

1 1 0

diode of Q; reverse-biased. In this way, only Q, conducts
when the output is low.

Totem-Pole Output

Why are totem-pole transistors used? Because they produce
a low output impedance. Either Q, acts like an emitter
follower (high output) or Q, is saturated (low output).
Either way, the output impedance is very low. This is
important because it reduces the switching time. In other
words, when the output changes from low to high, or vice
versa, the low output impedance implies a short RC time
constant; this short time constant means that the output
voltage can change quickly from one state to the other.

Propagation Delay Time and Power Dissipation

Two quantities needed for our later discussions are power
dissipation and propagation delay time. A standard TTL
gate has a power dissipation of about 10 mW. It may vary
from this value because of signal levels; tolerances, etc.,
but on the average, it’s 10 mW per gate.

The propagation delay time is the amount of time it takes
for the output of a gate to change after the inputs have
changed. The propagation delay time of a TTL gate is in
the vicinity of 10 ns.

Device Numbers

By varying the design of Fig. 4-1 manufacturers can alter
the number of inputs and the logic function. The multiple-
emitter inputs and the totem-pole outputs are still used, no
matter what the design. (The only exception is an open
collector, discussed later.)

Table 4-2 lists some of the 7400-series TTL gates. For
instance, the 7400 is a chip with four 2-input NAND gates
in one package. Similarly, the 7402 has four 2-input NOR
gates, the 7404 has six inverters, and so on.

TABLE 4-2. STANDARD TTL

Device number Description
7400 Quad 2-input NAND gates
7402 Quad 2-input NOR gates
7404 Hex inverter
7408 Quad 2-input AND gates
7410 Triple 3-input NAND gates
7411 Triple 3-input AND gates
7420 Dual 4-input NAND gates
7421 Dual 4-input AND gates
7427 Triple 3-input NOR gates
7430 8-input NAND gate
7486 Quad 2-input XOR gates
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5400 Series

Any device in the 7400 series works over a temperature
range of 0° to 70°C and over a supply range of 4.75 to
5.25 V. This is adequate for commercial applications. The
5400 series, developed for the military applications, has
the same logic functions as the 7400 series, except that it
works over a temperature range of —55 to 125°C and over
a supply range of 4.5 to 5.5 V. Although 5400-series
devices can replace 7400-series devices, they are rarely
used commercially because of their much higher cost.

High-Speed TTL

The circuit of Fig. 4-1 is called standard TTL. By decreasing
the resistances a manufacturer can lower the internal time
constants; this decreases the propagation delay time. The
smaller resistances, however, increase the power dissipa-
tion. This variation is known as high-speed TTL. Devices
of this type are numbered 74H00, 74HO1, 74H02, and so
on. A high-speed TTL gate has a power dissipation around
22 mW and a propagation delay time of approximately 6
ns.

Low-Power TTL

By increasing the internal resistances a manufacturer can
reduce the power dissipation of TTL gates. Devices of this
type are called low-power TTL and are numbered 74L00,
74101, 74102, etc. These devices are slower than standard
TTL because of the larger internal time constants. A low-
power TTL gate has a power dissipation of approximately
1 mW and a propagation delay time around 35 ns.

Schottky TTL

With standard TTL, high-speed TTL, and low-power TTL,
the transistors go into saturation causing extra catriers to
flood the base. If you try to switch this transistor from
saturation to cutoff, you have to wait for the extra carriers
to flow out of the base; the delay is known as the saturation
delay time.

One way to reduce saturation delay time is with Schottky
TTL. The idea is to fabricate a Schottky diode along with
each bipolar transistor of a TTL circuit, as shown in Fig.
4-2. Because the Schottky diode has a forward voltage of
only 0.4 V, it prevents the transistor from saturating fully.

Fig. 4-2 Schottky diode prevents transistor saturation.
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This virtually eliminates saturation delay time, which means
better switching speed. This variation is called Schottky
TTL: the devices are numbered 74800, 74501, 74S02, and
so forth.

Schottky TTL devices are very fast, capable of operating
reliably at 100 MHz. The 74S00 has a power dissipation
around 20 mW per gate and a propagation delay time of
approximately 3 ns.

Low-Power Schottky TTL

By increasing internal resistances as well as using Schottky
diodes manufacturers have come up with the best compro-
mise between low power and high speed: low-power Schottky
TTL. Devices of this type are numbered 74LS00, 74LS01,
741802, etc. A low-power Schottky gate has a power
dissipation of around 2 mW and a propagation delay time
of approximately 10 ns, as shown in Table 4-3.

Standard TTL and low-power Schottky TTL are the
mainstays of the digital designer. In other words, of the
five TTL types listed in Table 4-3, standard TTL and low-
power Schottky TTL have emerged as the favorites of the
digital designers. You will see them used more than any
other bipolar types.

4-3 TTL CHARACTERISTICS

7400-series devices are guaranteed to work reliably over a
temperature range of O to 70°C and over a supply range of
4.75 to 5.25 V. In the discussion that follows, worst case
means that the parameters (characteristics like maximum
input current, minimum output voltage, and so on) are
measured under the worst conditions of temperature and
voltage—maximum temperature and minimum voltage for
some parameters, minimum temperature and maximum
voltage for others, or whatever combination produces the
worst values.

Floating Inputs

When a TTL input is low or grounded, a current g
(conventional direction) exists in the emitter, as shown in

TABLE 4-3. TTL POWER-DELAY VALUES

Power, Delay time,
Type mW ns
Low-power 1 35
Low-power Schottky 2 10
Standard 10 10
High-speed 22 6
Schottky 20 3
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Fig. 4-3 Open or floating iﬁput is the same as a high input.

Fig. 4-3a. On the other hand, when a TTL input is high
(Fig. 4-3b), the emitter diode cuts off and the emitter
current is approximately zero.

When a TTL input is floating (unconnected), as shown
in Fig. 4-3¢, no emitter current is possible. Therefore, a
floating TTL input is equivalent to a high input. In other
words, Fig. 4-3¢ produces the same output as Fig. 4-3b.
This is important to remember. In building circuits any
floating TTL input will act like a high input.

Figure 4-3d emphasizes the point. The input is floating
and is equivalent to a high input; therefore, the output of
the inverter is low.

Fig. 4-4 TTL inverter.

Worst-Case Input Voltages

Figure 4-4 shows a TTL inverter with an input voltage of
V, and an output voltage of V,,. When V, is 0 V (grounded),
the output voltage is high. With TTL devices, we can raise

V; to 0.8 V and still have a high output. The maximum
low-level input voltage is designated V. Data sheets list
this worst-case low input as

Take the other extreme. Suppose V, is 5 V in Fig. 4-4.
This is a high input; therefore, the output of the inverter is
low. V, can decrease all the way down to 2 V, and the
output will still be low. Data sheets list this worst-case
high input as

VIH:2V

In other words, any input voltage from 2 to 5 V is a high
input for TTL devices.

Worst-Case Output Voltages

Ideally, 0 V is the low output, and 5 V is the high output.
We cannot attain these ideal values because of internal
voltage drops. When the output is low in Fig. 4-4, Q, is
saturated and has a small voltage drop across it. With TTL
devices, any voltage from 0 to 0.4 V is a low output.

When the output is high, Q; acts like an emitter follower.
Because of the drop across Q;, D, and the 130-) resistor,
the output is less than 5 V. With TTL devices, a high
output is between 2.4 and 3.9 V, depending on the supply
voltage, temperature, and load.

This means that the worst-case output values are

Voo = 0.4V Vow = 24V

Table 4-4 summarizes the worst-case values. Remember
that they are valid over the temperature range (0 to 70°C)
and supply range (4.75 to 5.25 V).

Compatibility

The values shown in Table 4-4 indicate that TTL devices
are compatible. This means that the output of a TTL device
can drive the input of another TTL device, as shown in
Fig. 4-5a. To be specific, Fig. 4-5b shows a low TTL
output (0 to 0.4 V). This is low enough to drive the second
TTL device because any input less than 0.8 V is a low
input.

TABLE 4-4. TTL STATES (WORST

CASE)
Output, V Input, V
Low 04 0.8
High 2.4 2
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24t039V
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Fig. 4-5 Sourcing and sinking current.

(b)

Similarly, Fig. 4-5¢ shows a high TTL output (2.4 to
3.9 V). This is more than enough to drive the second TTL
because any input greater than 2 V is a high input.

Noise Margin

In the worst case, there is a margin of.0.4-V_between the
driver and the load in Fig. 4-5b and c. This difference,
called the noise margin, represents protection against noise.
In other words, the connecting wire between a TTL driver
and a TTL load may pick up stray noise voltages. As long
as these induced voltages are less than 0.4 V, we get no
false triggering of the TTL load.

Sourcing and Sinking

When a standard TTL output is low (Fig. 4-5b), an emitter
current of approximately 1.6 mA (worst case) exists in the
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direction shown. The charges flow from the emitter of Q,
to the collector of Q,. Because it is saturated, Q, acts like
a current sink, charges flow through it to ground like water
flowing down a drain.

On the other hand, when a standard TTL output is high
(Fig. 4-5¢), a reverse emitter current of 40 wA (worst case)
exists in the direction shown. Charges flow from Q; to the
emitter of Q,. In this case, Qs is acting like a source.

Data sheets lists the worst-case input currents as

ip = —1.6 mA Iy = 40 pA
The minus sign indicates that the current is out of the
device; plus means the current is into the device. All data
sheets use this convention.

Standard Loading

A TTL device can source current (high output) or it can
sink current (low output). Data sheets of standard TTL
devices indicate that any 7400-series device can sink up to
16 mA, designated as

I, = 16 mA
and can source up to 400 pA, designated

(Again, a minus sign means that the current is out of the
device and a plus sign means that it’s into the device.)

A single TTL load has a low-level input current of 1.6
mA (Fig., 4-5b) and a high-level input current of 40 A
(Fig. 4-5¢). Since the maximum output currents are 10
times as large, we can connect up to 10 TTL emitters to
any TTL output.

Figure 4-6a illustrates a low output. Here you see the
TTL driver sinking 16 mA, the sum of 10 TTL load
currents. In this state, the output voltage is guaranteed to
be 0.4 V or less. If you try connecting more than 10
emitters, the output voltage may rise above 0.4 V.

Figure 4-6b shows a high output with the driver sourcing
400 pA for 10 TTL loads of 40 A each. For this maximum
loading, the output voltage is guaranteed to be 2.4 V or
more under worst-case conditions.

Loading Rules

The maximum namber of TTL emitters that can be reliably
driven under worst-case conditions is called the fanout.
With standard TTL, the fanout is 10, as shown in Fig.
4-6. Sometimes, we may want to use a standard TTL device
to drive low-power Schottky devices. In this case, the
fanout increases because low-power Schottky devices have
less input current.
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Fig. 4-6 Fanout of standard TTL devices: (a) low output; (b)
high output.

By examining data sheets for the different TTL types we
can calculate the fanout for all possible combinations. Table
4-5 summarizes these fanouts, which may be useful if you
ever have to mix TTL types.

Read Table 4-5 as follows. The series numbers have
been abbreviated; 74 stands for 7400 series, 74H for 74H00
series, and so forth. Drivers are on the left and loads on

TABLE 4-5. FANOUTS

TTL TTL load

driver 74 74H 74L 748 74LS
74 10 8 40 8 20
74H 12 10 50 10 25
74L 2 1 20 1 10
74S 12 10 100 10 50
74LS 5 4 40 4 20

the right. Pick the driver, pick the load, and read the fanout
at the intersection of the two. For instance, the fanout of a
standard device (74) driving low-power Schottky devices
(74LS) is 20. As another example, the fanout of a low-
power device (74L) driving high-speed devices (74H) is
only 1.

4-4 TTL OVERVIEW

Let’s take a look at the logic functions available in the
7400 series. This overview will give you an idea of the
variety of gates and circuits found in the TTL family. As
guide, Appendix 3 lists some of the 7400-series devices.
You will find it useful when looking for a device number
or logic function.

fa) (b}

(c}
Fig. 4-7 Three, four, and eight inputs,

NAND Gates

To begin with, the NAND gate is the backbone of the entire
series. All devices in the 7400 series are derived from the
2-input NAND gate shown in Fig. 4-1. To produce 3-, 4-,
and 8-input NAND gates the manufacturer uses 3-, 4-, and
8-emitter transistors, as shown in Fig. 4-7. Because they
are so basic, NAND gates are the least expensive devices in
the 7400 series.

NOR Gates

To get other logic functions the manufacturer modifies the
basic NAND-gate design. For instance, Fig. 4-8 shows a 2-
input NOR gate. Q,, Q,, Q;, and Q, are the same as in the
basic design. Qs and Q, have been added to produce ORing.
Notice that Q, and Qg are in parallel, the key to the oring
followed by inversion to get NORing.
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Fig. 4-8 TTL Nor gate.

When A and B are both low, Q, and Qs are saturated;
this cuts off Q, and Qs. Then Q; acts like an emitter
follower and we get a high output.

If A or B or both are high, Q, or Qs or both are cut off,
forcing Q, or Qg or both to turn on. When this happens,
Q, saturates and pulls the output down to a low voltage.

With more transistors, manufacturers can produce 3- and
4-input NOR gates. (A TTL 8-input NOR gate is not available.)

AND and OR Gates

To produce the AND function, another common-emitter
stage is inserted before the totem-pole output of the basic
NAND gate design. The extra inversion converts the NAND
gate to an AND gate. Similarly, another CE stage can be
inserted before the totem-pole output of Fig. 4-8; this
converts the NOR gate to an OR gate.

Buffer-Drivers

A buffer is a device that isolates two other devices.
Typically, a buffer has a high input impedance and a low
output impedance. In terms of digital 1Cs, this means a low
input current and a high output current.

Since the output current of a standard TTL gate can be
10 times the input current, a basic gate does a certain
amount of buffering (isolating). But it’s only when the
manufacturer optimizes the design for high output currents
that we call a device a buffer or driver.

As an example, the 7437 is a quad 2-input NAND buffer,
meaning four 2-input NAND gates optimized to get high
output currents. Fach gate has the following worst-case
values of input and output currents:

IIL= — 1.6 mA IIH:
48 mA IOH

40 pA
—1.2 mA

IOL
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The input currents are the same as those of a standard NAND
gate, but the output currents are 3 times as high, which
means that the 7437 can drive heavier loads.

Appendix 3 includes several other buffer-drivers.

}
§;
d

fa) (b)
Fig. 4-9 Seven-segment display.

Encoders and Decoders

A number of TTL chips are available for encoding and
decoding data. For instance, the 74147 is a decimal-to-
BCD encoder. It has 10 input lines (decimal) and 4 output
lines (BCD). As another example, the 74154 is a 1-of-16
decoder. It has 4 input lines (binary) and 16 output lines
(hexadecimal).

Seven-segment decoders (7446, 7447, etc.) are useful for
decimal displays. They convert a BCD nibble into an output
that can drive a seven-segment display. Figure 4-9q illus-
trates the idea behind a seven-segment LED display. It has
seven separate LEDs that allow you to display any digit
between 0 and 9. To display a 7, the decoder will turn on
LEDs a, b, and c (Fig. 4-9b).

Seven-segment displays are not limited to decimal num-
bers. For instance, in some microprocessor trainers, seven-
segment displays are used to indicate hexadecimal digits.
Digits A, C, E, and F are displayed in uppercase form;
digit B is shown as a lowercase b (LEDs ¢, d, e, f, g)and
digit D as a lowercase d (LEDs b, c, d, e, g).

Schmitt Triggers

When a computer is running, the outputs of gates are
rapidly switching from one state to another. If you look at
these signals with an oscilloscope, you see signals that
ideally resemble rectangular waves like Fig. 4-10a.

When digital signals are transmitted and later received,
they are often corrupted by noise, attenuation, or other
factors and may wind up looking like the ragged waveform
shown in Fig. 4-10b. If you try to use these nonrectangular
signals to drive a gate or other digital device, you get
unreliable operation.

This is where the Schmitt trigger comes in. It designed
to clean up ragged looking pulses, producing almost vertical
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Fig. 4-11 (a) Hex Schmitt-trigger inverters; (b) 4-input NAND
Schmitt trigger; (c) 2-input NAND Schmitt trigger.
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transitions between the low and high state, and vice versa
(Fig. 4-10c). In other words, the Schmitt trigger produces
a rectangular output, regardless of the input waveform.

The 7414 is a hex Schmitt-trigger inverter, meaning six
Schmitt-trigger inverters in one package like Fig. 4-11a.
Notice the hysteresis symbol inside each inverter; it des-
ignates the Schmitt-trigger function.

Two other TTL Schmitt triggers are available. The 7413
is a dual 4-input NAND Schmitt trigger, two Schmitt-trigger
gates like Fig. 4-11b. The 74132 is a quad 2-input NAND
Schmitt trigger, four Schmitt-trigger gates like Fig. 4-11c.

Other Devices

The 7400 series also includes a number of other devices
that you will find useful, such as AND-OR-INVERT gates

(discussed in the next section), latches and flip-flops (Chap.
7), registers and counters (Chap. 8), and memories (Chap.
9).

4-5 AND-OR-INVERT GATES

Figure 4-12a shows an AND-OR circuit. Figure 4-12b shows
the De Morgan equivalent circuit, a NAND-NAND network.
In either case, the boolean equation is

Y = AB + CD (4-1)

Since NAND gates are the preferred TTL gates, we would
build the circuit of Fig. 4-12b. NAND-NAND circuits like
this are important because with them you can build any
desired logic circuit (discussed in Chap. 5).

TTL Devices

Is there any TTL device with the output given by Eq. 4-1?
Yes, there are some AND-OR gates but they are not easily
derived from the basic NAND-gate design. The gate that is
easy to derive and comes close to having an expression like
Eq. 4-1 is the AND-OR-INVERT gate shown in Fig. 4-12c.
In other words, a variety of circuits like this are available
on chips. Because of the inversion, the output has an
equation of

Y=AB + CD 4-2)
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Fig. 4-12 (a) AND-OR circuit; (b) NAND-NAND circuit; (¢) AND-
OR-INVERT ¢ircuit.
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Fig. 4-13 AND-OR-INVERT schematic diagram.

Figure 4-13 shows the schematic diagram of a TTL AND-
OR-INVERT gate. Q;, Q,, Qs, and Q, form the basic 2-input
NAND gate of the 7400 series. By adding Qs and Qg we
convert the basic NAND gate to an AND-OR-INVERT gate.

Q, and Qs act like 2-input AND gates; Q, and Q4 produce
oring and inversion. Because of this, the circuit is logically
equivalent to Fig. 4-12c.

In Table 4-6, listing the AND-OR-INVERT gates available
in the 7400 series, 2-wide means two AND gates across, 4-
wide means four AND gates across, and so on. For instance,
the 7454 is a 2-input 4-wide AND-OR-INVERT gate like Fig.
4-14a; each AND gate has two inputs (2-input) and there
are four AND gates (4-wide). Figure 4-14b shows the 7464;
it is a 2-2-3-4-input 4-wide AND-OR-INVERT gate.

When we want the output given by Eq. 4-1, we can
connect the output of a 2-input 2-wide AND-OR-INVERT gate
to another inverter. This cancels out the internal inversion,
giving us the equivalent of an AND-OR circuit (Fig. 4-12a)
or a NAND-NAND network (Fig. 4-120).

Expandable AND-OR-INVERT Gates

The widest AND-OR-INVERT gate available in the 7400 series
is 4-wide. What do we do when we need a 6- or 8-wide
circuit? One solution is to use an expandable AND-OR-
INVERT gate.

TABLE 4-6. AND-OR-INVERT GATES

Device Description

7451 Dual 2-input 2-wide
7454 2-input 4-wide

7459 Dual 2-3 input 2-wide
7464 2-2-3-4 input 4-wide
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Fig. 4-14 Examples of AND-OR-INVERT circuits.

Figure 4-15a shows the schematic diagram of an ex-
pandable AND-OR-INVERT gate. The only difference between
this and the preceding AND-OR-INVERT gate (Fig. 4-13) is
collector and emitter tie points brought outside the package.
Since Q, and Qg are the key to the ORing operation, we dre
being given access to the internal ORing function. By
connecting other gates to these new inputs we can expand
the width of the AND-OR-INVERT gate.

Figure 4-15b shows the logic symbol for an expandable
AND-OR-INVERT gate. The arrow input represents the emitter,
and the bubble stands for the collector. Table 4-7 lists the
expandable AND-OR-INVERT gates in the 7400 series.

Expanders

What do we connect to the collector and emitter inputs of
an expandable gate? The output of an expander like Fig.
4-16a. The input transistor acts like a 4-input AND gate.
The output transistor is a phase splitter; it produces two

TABLE 4-7. EXPANDABLE AND-OR-
INVERT GATES

Device Description

7450 Dual 2-input 2-wide
7453 2-input 4-wide
7455 4-input 2-wide
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Fig. 4-15 (a) Expandable AND-OR-INVERT gate; (b) logic symbol.
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Fig. 4-16 (a) Expander; (b) symbol for expander; (¢) expander
driving expandable AND-OR-INVERT gate; (d) AND-OR-INVERT Cir-
cuit; (¢) expandable AND-OR-INVERT with two expanders.

output signals, one in phase (emitter) and the other inverted
(collector). Figure 4-16b shows the symbol of a 4-input
expander.

Visualize the outputs of Fig. 4-16a connected to the
collector and emitter inputs of Fig. 4-15a. Then Q; is in
parallel with Q, and Q4. Figure 4-16¢ shows the logic
circuit. This means that the expander outputs are being
ORred with the signals of the AND-OR-INVERT gate. In other
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words, Fig. 4-16¢ is equivalent to the AND-OR-INVERT
circuit of Fig. 4-16d.

We can connect more expanders. Figure 4-16¢ shows
two expanders driving the expandable gate. Now we have
a 2-2-4-4-input 4-wide AND-OR-INVERT circuit.

The 7460 is a dual 4-input expander. The 7450, a dual
expandable AND-OR-INVERT gate, is designed for use with
up to four 7460 expanders. This means that we can add
two more expanders in Fig. 4-16¢ to get a 2-2-4-4-4-4-
input 6-wide AND-OR-INVERT circuit.
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4-6 OPEN-COLLECTOR GATES

Instead of a totem-pole output, some TTL devices have an
open-collector output. This means they use only the lower
transistor of a totem-pole pair. Figure 4-17a shows a 2-
input NAND gate with an open-collector output. Because
the collector of Q, is open, a gate like this won’t work
properly until you connect an external pull-up resistor,
shown in Fig. 4-17b.

+5V

Pull-up
resistor

(b)
Fig. 4-17 Open-collector TTL: (a) circuit; (b) with pull-up resistor.

The outputs of open-collector gates can be wired together
and connected to a common pull-up resistor. This is known
as WIRE-OR. The big disadvantage of open-collector gates
is their slow switching speed.

Open-collector gates are virtually obsolete because a new
device called the three-state switch appeared in the early
1970s. Section 8-8 discusses three-state switches in detail.

4-7 MULTIPLEXERS

Multiplex means ‘‘many into one.”’ A multiplexer is a
circuit with many inputs but only one output. By applying
control signals we can steer any input to the output.

58 Digital Computer Electronics

Data Selection

Figure 4-18 shows a 16-to-1 multiplexer, also called a data
selector. The input data bits are Dy to Dys. Only one of
these is transmitted to the output. Control word ABCD
determines which data bit is passed to the output. For
instance, when

ABCD = 0000

the upper AND gate is enabled but all other AND gates are
disabled. Therefore, data bit D, is transmitted to the output,
giving

Y = D()
If the control word is changed to

ABCD = 1111

the bottom gate is enabled and all other gates are disabled.
In this case,

Y =Dy

Boolean Function Generator

Digital design often starts with a truth table. The problem
then is to come up with an equivalent logic circuit.
Multiplexers give us a simple way to transform a truth table
into an equivalent logic circuit. The idea is to use input
data bits that are equal to the desired output bits of the
truth table.

For example, look at the truth table of Table 4-8. When
the input word ABCD is 0000, the output is 0; when ABCD

TABLE 4-8
A B C D\|Y
0 0 0 010
0 0 0 11
0 01 00
0 01 1]0
0 1 0 0
0 1 0 10
0 1 1 011
0 1 1 17}1
1 0 0 070
1 0 0 1|0
1 0 1 040
{1 01 10
1 1L 0 0j0
1 1 0 10
1 1 1 0|1
1 1.1 1]0
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Fig. 4-18 A 16-to-1 multiplexer.
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Fig. 4-19 Generating a boolean function.

= 0001, the output is 1; when ABCD = 0010, the output
is 0; and so on. Figure 4-19 shows how to sct up a
multiplexer with the foregoing truth table. When ABCD
= 0000, data bit O is steered to the output; when ABCD
= 0001, data bit 1 is steered to the output; when ABCD
= 0010, data bit 0 is steered to the output; and so forth.
As a result, the truth table of this circuit is the same as
Table 4-8.

Universal Logic Circuit

The 74150 is a 16-to-1 multiplexer. This TTL device is a
universal logic circuit because you can use it to get the
hardware equivalent of any four-variable truth table. In
other words, by changing the input data bits the same IC
can be made to generate thousands of different truth tables.

Multiplexing Words

Figure 4-20 illustrates a word multiplexer that has two input
words and one output word. The input word on the left is
L;L,L,L, and the one on the right is R;R;R;R,,. The control
signal labeled RIGHT selects the input word that will be
transmitted to the output. When RIGHT is low, the four
NAND gates on the left are activated; therefore,

OUT = L;L,L|L,
When RIGHT is high,
OUT = R;R;R/R,
The 74157 is TTL multiplexer with an equivalent circuit

like Fig. 4-20. Appendix 3 lists other multiplexers available
in the 7400 series.

RIGHT‘T—DC

ouT

Fig. 4-20 Nibble multiplexer.

GLOSSARY

bipolar Having two types of charge carriers: free electrons
and holes.

chip A small piece of semiconductor material. Sometimes,
chip refers an IC device including its pins.
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fanout The maximum number of TTL loads that a TTL
device can drive reliably over the specified temperature

range.
low-power Schottky TTL. A modification of standard TTL



in which larger resistances and Schottky diodes are used.
The increased resistances decrease the power dissipation,
and the Schottky diodes increase the speed.

multiplexer A circuit with many inputs but only one
output. Control signals select which input reaches the output.
noise margin The amount of noise voltage that causes
unreliable operation. With TTL it is 0.4 V. As long as
noise voltages induced on connecting lines are less than
0.4V, the TTL devices will work reliably.

saturation delay time The time delay encountered when
a transistor tries to come out of the saturation region. When
the base drive switches from high to low, a transistor cannot
instantaneously come out of saturation; extra carriers that
flooded the base region must first flow out of the base.

Schmitttrigger A digital circuit that produces a rectangular
output from any input large enough to drive the Schmitt
trigger. The input waveform may be sinusoidal, triangular,
distorted, and so on. The output is always rectangular.
sink A place where something is absorbed. When satu-
rated, the lower transistor in a totem-pole output acts like
a current sink because conventional charges flow through
the transistor to ground.

source A place where something originates. The upper
transistor of a totem-pole output acts like a source because
charges flow out of its emitter into the load.

standard TTL The initial TTL design with resistance
values that produce a power dissipation of 10 mW per gate
and a propagation delay time of 10 ns.

SELF-TESTING REVIEW

Read each of the following and provide the missing words.
Answers appear at the beginning of the next question.

1. Small-scale integration, abbreviated . re-
fers to fewer than 12 gates on the same chip.
Medium-scale integration (MSI) means 12 to 100
gates per chip. And large-scale integration (LSI)
refers to more than gates per chip.

2. (8SI, 100) The two basic technologies for digital
ICs are bipolar and MOS. Bipolar technology is
preferred for and whereas
MOS technology is better suited to LSI. The reason
MOS dominates the LSI field is that more
can be fabricated on the same chip area.

3. (SSI, MSI, MOSFETs) Some of the bipolar families
include DTL, TTL, and ECL. has be-
come the most widely used bipolar family.
is the fastest logic family; it’s used in high-speed
applications.

4. (TTL, ECL) Some of the MOS families are PMOS,
NMOS, and CMOS. dominates the LSI
field, and is used extensively where
lowest power consumption is necessary.

5. (NMOS, CMOS) The 7400 series, also called stan-
dard TTL, contains a variety of SSI and
chips that allow us to build all kinds of digital
circuits and systems. Standard TTL has a multiple-
emitter input transistor and a ____ output.
The totem-pole output produces a low output
impedance in either state.

6. (MSI, rotem-pole) Besides standard TTL, there is
high-speed TTL, low-power TTL, Schottky TTL,
and low-power TTL. Standard TTL and
low-power TTL have become the favor-
ites of digital designers, used more than any other
bipolar families.

7. (Schottky, Schottky) 7400-series devices are guaran-
teed to work reliably over a range of 0
to 70°C and over a voltage range of 4.75 to 5.25 V.
A floating TTL input has the same effect as a

input.

8. (temperature, high) A TTL device can
sink up to 16 mA and can source up to 400 pA.
The maximum number of TTL loads a TTL device
can drive is called the . With standard
TTL, the fanout equals .

9. (standard, fanout, 10) A buffer is a device that
isolates other devices. Typically, a buffer has a high
input impedance and a output imped-
ance. In terms of digital ICs, this means a
input current and a high output current capability.

10. (low, low) A Schmitt trigger is a digital circuit that
produces a output regardless of the in-
put waveform. It is used to clean up ragged looking
pulses that have been distorted during transmission
from one place to another.

11.  (rectangular) A multiplexer is a circuit with many
inputs but only one output. It is also called a data
selector because data can be steered from one of the
inputs to the output. A 74150 is a 16-to-1 multi-
plexer. With this TTL device you can implement
the logic circuit for any four-variable truth table.
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PROBLEMS

Fig.

4-1.

4-3.

4-4.
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4-21

In Fig. 4-21 a grounded input means that almost
the entire supply voltage appears across the 4-k(}
resistor. Allowing 0.7 V for the emitter-base volt-
age of Q,, how much input emitter current is there
with a grounded-input? The supply voltage can be
as high as 5.25 V and the 4-k{} resistance can be a
low as 3.28 k(). What is the input emitter current
in this case?

What is the fanout of a 74S00 device when it
drives low-power TTL loads?

What is the fanout of a low-power Schottky device
driving standard TTL devices?

Section 4-4 gave the input and output currents for a
7437 buffer. What is the fanout of a 7437 when it
drives standard TTL loads?

Digital Computer Electronics

(a) {b)

Fig. 4-22

4-5.

4-6.

4-7.
4-8.

4-10.

A seven-segment decoder is driving a LED display
like Fig. 4-22a. Which LEDs are on when digit 8
appears? Which LEDs are on when digit 4 ap-
pears?

Section 4-7 described the 74150, a 16-to-1 multi-
plexer. Refer to Fig. 4-23 and indicate the values
the D, to D,; inputs of a 74150 should have to
reproduce the following truth table: The output is
high when ABCD = 0000, 0100, 0111, 1100,
and 1111; the output is low for all other inputs.
What is propagation delay?

Why are 5400 series devices not normally used in
commercial applications?

What do Schottky devices virtually eliminate
which makes their high switching speeds possi-
ble?

What is the noise margin of TTL devices?
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